Properties

Label 2-72-8.3-c6-0-20
Degree $2$
Conductor $72$
Sign $1$
Analytic cond. $16.5638$
Root an. cond. $4.06987$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 64·4-s + 512·8-s + 2.33e3·11-s + 4.09e3·16-s + 1.72e3·17-s − 2.48e3·19-s + 1.87e4·22-s + 1.56e4·25-s + 3.27e4·32-s + 1.38e4·34-s − 1.98e4·38-s − 1.34e5·41-s − 7.49e4·43-s + 1.49e5·44-s + 1.17e5·49-s + 1.25e5·50-s − 3.04e5·59-s + 2.62e5·64-s − 5.96e5·67-s + 1.10e5·68-s − 5.93e5·73-s − 1.58e5·76-s − 1.07e6·82-s − 6.78e5·83-s − 5.99e5·86-s + 1.19e6·88-s + ⋯
L(s)  = 1  + 2-s + 4-s + 8-s + 1.75·11-s + 16-s + 0.351·17-s − 0.361·19-s + 1.75·22-s + 25-s + 32-s + 0.351·34-s − 0.361·38-s − 1.95·41-s − 0.942·43-s + 1.75·44-s + 49-s + 50-s − 1.48·59-s + 64-s − 1.98·67-s + 0.351·68-s − 1.52·73-s − 0.361·76-s − 1.95·82-s − 1.18·83-s − 0.942·86-s + 1.75·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72\)    =    \(2^{3} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(16.5638\)
Root analytic conductor: \(4.06987\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: $\chi_{72} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 72,\ (\ :3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(3.870536198\)
\(L(\frac12)\) \(\approx\) \(3.870536198\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{3} T \)
3 \( 1 \)
good5 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
7 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
11 \( 1 - 2338 T + p^{6} T^{2} \)
13 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
17 \( 1 - 1726 T + p^{6} T^{2} \)
19 \( 1 + 2482 T + p^{6} T^{2} \)
23 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
29 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
31 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
37 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
41 \( 1 + 134642 T + p^{6} T^{2} \)
43 \( 1 + 74914 T + p^{6} T^{2} \)
47 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
53 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
59 \( 1 + 304958 T + p^{6} T^{2} \)
61 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
67 \( 1 + 596626 T + p^{6} T^{2} \)
71 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
73 \( 1 + 593134 T + p^{6} T^{2} \)
79 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
83 \( 1 + 678926 T + p^{6} T^{2} \)
89 \( 1 - 357262 T + p^{6} T^{2} \)
97 \( 1 - 1822754 T + p^{6} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51225828642595810649751988690, −12.28901075524337143111726006031, −11.55988509987007774099999632055, −10.28520872202215563412857764446, −8.780661444958387118734222466214, −7.12305919479374606977053946719, −6.13381903371298534855228064032, −4.60878756639366435991665836769, −3.34516930045231986892629436143, −1.49751559914752858477471144769, 1.49751559914752858477471144769, 3.34516930045231986892629436143, 4.60878756639366435991665836769, 6.13381903371298534855228064032, 7.12305919479374606977053946719, 8.780661444958387118734222466214, 10.28520872202215563412857764446, 11.55988509987007774099999632055, 12.28901075524337143111726006031, 13.51225828642595810649751988690

Graph of the $Z$-function along the critical line