Properties

Label 2-72-8.3-c4-0-6
Degree $2$
Conductor $72$
Sign $1$
Analytic cond. $7.44263$
Root an. cond. $2.72811$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s − 64·8-s + 46·11-s + 256·16-s + 574·17-s + 434·19-s − 184·22-s + 625·25-s − 1.02e3·32-s − 2.29e3·34-s − 1.73e3·38-s + 1.24e3·41-s − 3.50e3·43-s + 736·44-s + 2.40e3·49-s − 2.50e3·50-s + 238·59-s + 4.09e3·64-s − 5.13e3·67-s + 9.18e3·68-s + 9.50e3·73-s + 6.94e3·76-s − 4.98e3·82-s − 1.11e4·83-s + 1.40e4·86-s − 2.94e3·88-s + ⋯
L(s)  = 1  − 2-s + 4-s − 8-s + 0.380·11-s + 16-s + 1.98·17-s + 1.20·19-s − 0.380·22-s + 25-s − 32-s − 1.98·34-s − 1.20·38-s + 0.741·41-s − 1.89·43-s + 0.380·44-s + 49-s − 50-s + 0.0683·59-s + 64-s − 1.14·67-s + 1.98·68-s + 1.78·73-s + 1.20·76-s − 0.741·82-s − 1.62·83-s + 1.89·86-s − 0.380·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72\)    =    \(2^{3} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(7.44263\)
Root analytic conductor: \(2.72811\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: $\chi_{72} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 72,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.121519889\)
\(L(\frac12)\) \(\approx\) \(1.121519889\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
3 \( 1 \)
good5 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
7 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
11 \( 1 - 46 T + p^{4} T^{2} \)
13 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
17 \( 1 - 574 T + p^{4} T^{2} \)
19 \( 1 - 434 T + p^{4} T^{2} \)
23 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
29 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
31 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
37 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
41 \( 1 - 1246 T + p^{4} T^{2} \)
43 \( 1 + 3502 T + p^{4} T^{2} \)
47 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
53 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
59 \( 1 - 238 T + p^{4} T^{2} \)
61 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
67 \( 1 + 5134 T + p^{4} T^{2} \)
71 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
73 \( 1 - 9506 T + p^{4} T^{2} \)
79 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
83 \( 1 + 11186 T + p^{4} T^{2} \)
89 \( 1 + 5474 T + p^{4} T^{2} \)
97 \( 1 + 9982 T + p^{4} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.10814446486934802731230603310, −12.43744612041662292594077455803, −11.58199475585457548701835733177, −10.29712167486445104576401407754, −9.403598517774178191079347476242, −8.121119847953233467091553569821, −7.04691269205404191139133604801, −5.56228531970033939795410780887, −3.19349166742238189649177998603, −1.14250040043129782542659165686, 1.14250040043129782542659165686, 3.19349166742238189649177998603, 5.56228531970033939795410780887, 7.04691269205404191139133604801, 8.121119847953233467091553569821, 9.403598517774178191079347476242, 10.29712167486445104576401407754, 11.58199475585457548701835733177, 12.43744612041662292594077455803, 14.10814446486934802731230603310

Graph of the $Z$-function along the critical line