L(s) = 1 | − 1.02e3·2-s + 1.04e6·4-s − 1.07e9·8-s + 4.23e10·11-s + 1.09e12·16-s + 3.35e12·17-s − 1.01e12·19-s − 4.34e13·22-s + 9.53e13·25-s − 1.12e15·32-s − 3.43e15·34-s + 1.03e15·38-s + 2.54e16·41-s + 2.78e15·43-s + 4.44e16·44-s + 7.97e16·49-s − 9.76e16·50-s + 1.73e17·59-s + 1.15e18·64-s − 3.56e17·67-s + 3.51e18·68-s − 6.01e18·73-s − 1.06e18·76-s − 2.60e19·82-s + 3.10e19·83-s − 2.84e18·86-s − 4.55e19·88-s + ⋯ |
L(s) = 1 | − 2-s + 4-s − 8-s + 1.63·11-s + 16-s + 1.66·17-s − 0.165·19-s − 1.63·22-s + 25-s − 32-s − 1.66·34-s + 0.165·38-s + 1.89·41-s + 0.128·43-s + 1.63·44-s + 49-s − 50-s + 0.340·59-s + 64-s − 0.195·67-s + 1.66·68-s − 1.40·73-s − 0.165·76-s − 1.89·82-s + 1.99·83-s − 0.128·86-s − 1.63·88-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)Λ(21−s)
Λ(s)=(=(72s/2ΓC(s+10)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
1
|
Analytic conductor: |
182.529 |
Root analytic conductor: |
13.5103 |
Motivic weight: |
20 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ72(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :10), 1)
|
Particular Values
L(221) |
≈ |
1.967758104 |
L(21) |
≈ |
1.967758104 |
L(11) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p10T |
| 3 | 1 |
good | 5 | (1−p10T)(1+p10T) |
| 7 | (1−p10T)(1+p10T) |
| 11 | 1−42383023726T+p20T2 |
| 13 | (1−p10T)(1+p10T) |
| 17 | 1−3353535763774T+p20T2 |
| 19 | 1+1014654432526T+p20T2 |
| 23 | (1−p10T)(1+p10T) |
| 29 | (1−p10T)(1+p10T) |
| 31 | (1−p10T)(1+p10T) |
| 37 | (1−p10T)(1+p10T) |
| 41 | 1−25418071370591326T+p20T2 |
| 43 | 1−2781113986388498T+p20T2 |
| 47 | (1−p10T)(1+p10T) |
| 53 | (1−p10T)(1+p10T) |
| 59 | 1−173912197184497198T+p20T2 |
| 61 | (1−p10T)(1+p10T) |
| 67 | 1+356137514166464974T+p20T2 |
| 71 | (1−p10T)(1+p10T) |
| 73 | 1+6016717170316692574T+p20T2 |
| 79 | (1−p10T)(1+p10T) |
| 83 | 1−31022856480301602574T+p20T2 |
| 89 | 1+61202446863210984674T+p20T2 |
| 97 | 1+50009130514058267902T+p20T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.69101734496217098666848402140, −9.617155241152997180504483296189, −8.845081649352637385181319401699, −7.68334532172466686784337896805, −6.69234139085407194074509950030, −5.67647835646137525879441359004, −3.95579651647993289169161350965, −2.81385343414303355035035655005, −1.42926763420696392447469492068, −0.78378243989395013061315096680,
0.78378243989395013061315096680, 1.42926763420696392447469492068, 2.81385343414303355035035655005, 3.95579651647993289169161350965, 5.67647835646137525879441359004, 6.69234139085407194074509950030, 7.68334532172466686784337896805, 8.845081649352637385181319401699, 9.617155241152997180504483296189, 10.69101734496217098666848402140