Properties

Label 2-72-8.3-c20-0-57
Degree $2$
Conductor $72$
Sign $1$
Analytic cond. $182.529$
Root an. cond. $13.5103$
Motivic weight $20$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.02e3·2-s + 1.04e6·4-s − 1.07e9·8-s + 4.23e10·11-s + 1.09e12·16-s + 3.35e12·17-s − 1.01e12·19-s − 4.34e13·22-s + 9.53e13·25-s − 1.12e15·32-s − 3.43e15·34-s + 1.03e15·38-s + 2.54e16·41-s + 2.78e15·43-s + 4.44e16·44-s + 7.97e16·49-s − 9.76e16·50-s + 1.73e17·59-s + 1.15e18·64-s − 3.56e17·67-s + 3.51e18·68-s − 6.01e18·73-s − 1.06e18·76-s − 2.60e19·82-s + 3.10e19·83-s − 2.84e18·86-s − 4.55e19·88-s + ⋯
L(s)  = 1  − 2-s + 4-s − 8-s + 1.63·11-s + 16-s + 1.66·17-s − 0.165·19-s − 1.63·22-s + 25-s − 32-s − 1.66·34-s + 0.165·38-s + 1.89·41-s + 0.128·43-s + 1.63·44-s + 49-s − 50-s + 0.340·59-s + 64-s − 0.195·67-s + 1.66·68-s − 1.40·73-s − 0.165·76-s − 1.89·82-s + 1.99·83-s − 0.128·86-s − 1.63·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(21-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+10) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72\)    =    \(2^{3} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(182.529\)
Root analytic conductor: \(13.5103\)
Motivic weight: \(20\)
Rational: yes
Arithmetic: yes
Character: $\chi_{72} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 72,\ (\ :10),\ 1)\)

Particular Values

\(L(\frac{21}{2})\) \(\approx\) \(1.967758104\)
\(L(\frac12)\) \(\approx\) \(1.967758104\)
\(L(11)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{10} T \)
3 \( 1 \)
good5 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
7 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
11 \( 1 - 42383023726 T + p^{20} T^{2} \)
13 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
17 \( 1 - 3353535763774 T + p^{20} T^{2} \)
19 \( 1 + 1014654432526 T + p^{20} T^{2} \)
23 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
29 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
31 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
37 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
41 \( 1 - 25418071370591326 T + p^{20} T^{2} \)
43 \( 1 - 2781113986388498 T + p^{20} T^{2} \)
47 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
53 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
59 \( 1 - 173912197184497198 T + p^{20} T^{2} \)
61 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
67 \( 1 + 356137514166464974 T + p^{20} T^{2} \)
71 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
73 \( 1 + 6016717170316692574 T + p^{20} T^{2} \)
79 \( ( 1 - p^{10} T )( 1 + p^{10} T ) \)
83 \( 1 - 31022856480301602574 T + p^{20} T^{2} \)
89 \( 1 + 61202446863210984674 T + p^{20} T^{2} \)
97 \( 1 + 50009130514058267902 T + p^{20} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69101734496217098666848402140, −9.617155241152997180504483296189, −8.845081649352637385181319401699, −7.68334532172466686784337896805, −6.69234139085407194074509950030, −5.67647835646137525879441359004, −3.95579651647993289169161350965, −2.81385343414303355035035655005, −1.42926763420696392447469492068, −0.78378243989395013061315096680, 0.78378243989395013061315096680, 1.42926763420696392447469492068, 2.81385343414303355035035655005, 3.95579651647993289169161350965, 5.67647835646137525879441359004, 6.69234139085407194074509950030, 7.68334532172466686784337896805, 8.845081649352637385181319401699, 9.617155241152997180504483296189, 10.69101734496217098666848402140

Graph of the $Z$-function along the critical line