L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.499 + 0.866i)6-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (0.5 + 0.866i)11-s + 0.999·12-s + (−0.5 − 0.866i)16-s − 17-s + 0.999·18-s − 19-s + (0.499 − 0.866i)22-s + (−0.5 − 0.866i)24-s + (−0.5 − 0.866i)25-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.499 + 0.866i)6-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (0.5 + 0.866i)11-s + 0.999·12-s + (−0.5 − 0.866i)16-s − 17-s + 0.999·18-s − 19-s + (0.499 − 0.866i)22-s + (−0.5 − 0.866i)24-s + (−0.5 − 0.866i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3544866523\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3544866523\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T + T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - 2T + T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.34571041592205361528943903242, −13.14488498825266391224630030241, −12.39764694798549826442099294177, −11.43543784024726873689769103533, −10.42530837244236248432447086564, −9.026004063438331298527805431678, −7.78292414143922961147563368342, −6.52229259023448238669588328170, −4.47388984368426759808121563855, −2.13460287732343082794920450963,
4.17397350823654265270160808926, 5.63538510576822836356840705680, 6.70640051462313961974619854325, 8.479371373944274566855562461374, 9.352510038710622356505889286642, 10.58013683892231668704707658551, 11.46457120346775008809481426109, 13.25301324941013762299050072315, 14.49356786122127795921995434996, 15.34043328614189626901675784065