L(s) = 1 | + (−1.36 + 0.366i)2-s + (−0.866 + 1.5i)3-s + (1.73 − i)4-s + (−1.73 + i)5-s + (0.633 − 2.36i)6-s + (−2 + 3.46i)7-s + (−1.99 + 2i)8-s + (−1.5 − 2.59i)9-s + (1.99 − 2i)10-s + (2.59 + 1.5i)11-s + 3.46i·12-s + (1.73 − i)13-s + (1.46 − 5.46i)14-s − 3.46i·15-s + (1.99 − 3.46i)16-s + 5·17-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (−0.499 + 0.866i)3-s + (0.866 − 0.5i)4-s + (−0.774 + 0.447i)5-s + (0.258 − 0.965i)6-s + (−0.755 + 1.30i)7-s + (−0.707 + 0.707i)8-s + (−0.5 − 0.866i)9-s + (0.632 − 0.632i)10-s + (0.783 + 0.452i)11-s + 0.999i·12-s + (0.480 − 0.277i)13-s + (0.391 − 1.46i)14-s − 0.894i·15-s + (0.499 − 0.866i)16-s + 1.21·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.573 - 0.819i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.573 - 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.199862 + 0.383933i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.199862 + 0.383933i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 - 0.366i)T \) |
| 3 | \( 1 + (0.866 - 1.5i)T \) |
good | 5 | \( 1 + (1.73 - i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2 - 3.46i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.59 - 1.5i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.73 + i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 5T + 17T^{2} \) |
| 19 | \( 1 - iT - 19T^{2} \) |
| 23 | \( 1 + (1 + 1.73i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2 - 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 2iT - 37T^{2} \) |
| 41 | \( 1 + (-2.5 - 4.33i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (9.52 + 5.5i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-10.3 - 6i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.59 + 1.5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - 9T + 73T^{2} \) |
| 79 | \( 1 + (-7 + 12.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.46 - 2i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 14T + 89T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.29265418580066753997779227219, −14.67386581721776456450694028739, −12.17675600904718451274949134417, −11.67026146300814555242580423990, −10.34326000840739451213141599018, −9.443369303386711787844930720142, −8.370991586526766644620930897732, −6.70322670223246431719646270721, −5.59999673995470352727593848927, −3.32942124861589429372848992180,
0.884195755745734177353933001764, 3.70685003664035112911932368740, 6.30334462187447895786850271729, 7.35564051714940854583092676864, 8.289693896764442110070953991204, 9.804990840672986192092784488114, 11.06091080108340116739538204240, 11.89287259888521964653672163956, 12.87709214913254813933916515271, 14.03390117928283652825979833217