L(s) = 1 | + (1.05 − 0.947i)2-s + (−1.52 − 0.816i)3-s + (0.206 − 1.98i)4-s + (0.602 + 0.348i)5-s + (−2.37 + 0.589i)6-s + (0.795 + 1.37i)7-s + (−1.66 − 2.28i)8-s + (1.66 + 2.49i)9-s + (0.962 − 0.205i)10-s + (−2.37 + 1.36i)11-s + (−1.93 + 2.87i)12-s + (4.76 + 2.75i)13-s + (2.13 + 0.693i)14-s + (−0.636 − 1.02i)15-s + (−3.91 − 0.819i)16-s − 5.65·17-s + ⋯ |
L(s) = 1 | + (0.742 − 0.669i)2-s + (−0.882 − 0.471i)3-s + (0.103 − 0.994i)4-s + (0.269 + 0.155i)5-s + (−0.970 + 0.240i)6-s + (0.300 + 0.520i)7-s + (−0.589 − 0.807i)8-s + (0.555 + 0.831i)9-s + (0.304 − 0.0649i)10-s + (−0.715 + 0.412i)11-s + (−0.559 + 0.828i)12-s + (1.32 + 0.763i)13-s + (0.571 + 0.185i)14-s + (−0.164 − 0.264i)15-s + (−0.978 − 0.204i)16-s − 1.37·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.340 + 0.940i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.340 + 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.876756 - 0.615058i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.876756 - 0.615058i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.05 + 0.947i)T \) |
| 3 | \( 1 + (1.52 + 0.816i)T \) |
good | 5 | \( 1 + (-0.602 - 0.348i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.795 - 1.37i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.37 - 1.36i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.76 - 2.75i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 5.65T + 17T^{2} \) |
| 19 | \( 1 - 0.963iT - 19T^{2} \) |
| 23 | \( 1 + (-3.28 + 5.69i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.85 - 1.64i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.69 - 6.40i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 6.25iT - 37T^{2} \) |
| 41 | \( 1 + (0.931 - 1.61i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.99 + 1.73i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.85 - 6.67i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 2.54iT - 53T^{2} \) |
| 59 | \( 1 + (-4.62 - 2.66i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.93 - 4.58i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.95 + 3.43i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 3.68T + 71T^{2} \) |
| 73 | \( 1 - 2.83T + 73T^{2} \) |
| 79 | \( 1 + (-2.87 - 4.98i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.74 + 3.31i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 2.98T + 89T^{2} \) |
| 97 | \( 1 + (1.24 + 2.16i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.11021185901510557613071515560, −13.13681548071164454976779059216, −12.32070363753068172070476034254, −11.14872030615339241758176193449, −10.57552300061442713217955365716, −8.879945469003759129364490469796, −6.83076516523778266959048123576, −5.79150577543534229142285836454, −4.49583117848105205069057465377, −2.08195674293928121016472794343,
3.76707217298851479536211762504, 5.19106950389860951369404351704, 6.14571756175975980283027333988, 7.57985470382888312724949018932, 9.066119929165669989863583963070, 10.81905963104551486153312750507, 11.44488170842381860726591431650, 13.14578747561769722429590889640, 13.45646279190138685522672517242, 15.28242739982870885838407159512