Properties

Label 2-72-1.1-c21-0-0
Degree $2$
Conductor $72$
Sign $1$
Analytic cond. $201.223$
Root an. cond. $14.1853$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.09e7·5-s + 9.17e7·7-s − 8.72e10·11-s − 2.36e11·13-s − 7.42e12·17-s + 4.68e9·19-s − 3.33e14·23-s + 4.82e14·25-s − 3.23e15·29-s + 6.40e15·31-s − 2.84e15·35-s − 1.61e16·37-s + 5.77e16·41-s − 2.01e17·43-s − 6.62e17·47-s − 5.50e17·49-s − 4.62e17·53-s + 2.70e18·55-s − 7.39e18·59-s − 5.50e18·61-s + 7.33e18·65-s + 6.03e18·67-s + 4.43e19·71-s − 2.48e19·73-s − 8.00e18·77-s + 5.70e19·79-s + 1.31e20·83-s + ⋯
L(s)  = 1  − 1.41·5-s + 0.122·7-s − 1.01·11-s − 0.476·13-s − 0.893·17-s + 0.000175·19-s − 1.67·23-s + 1.01·25-s − 1.43·29-s + 1.40·31-s − 0.174·35-s − 0.550·37-s + 0.671·41-s − 1.42·43-s − 1.83·47-s − 0.984·49-s − 0.363·53-s + 1.43·55-s − 1.88·59-s − 0.987·61-s + 0.675·65-s + 0.404·67-s + 1.61·71-s − 0.677·73-s − 0.124·77-s + 0.678·79-s + 0.932·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72\)    =    \(2^{3} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(201.223\)
Root analytic conductor: \(14.1853\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 72,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(0.01725057303\)
\(L(\frac12)\) \(\approx\) \(0.01725057303\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 3.09e7T + 4.76e14T^{2} \)
7 \( 1 - 9.17e7T + 5.58e17T^{2} \)
11 \( 1 + 8.72e10T + 7.40e21T^{2} \)
13 \( 1 + 2.36e11T + 2.47e23T^{2} \)
17 \( 1 + 7.42e12T + 6.90e25T^{2} \)
19 \( 1 - 4.68e9T + 7.14e26T^{2} \)
23 \( 1 + 3.33e14T + 3.94e28T^{2} \)
29 \( 1 + 3.23e15T + 5.13e30T^{2} \)
31 \( 1 - 6.40e15T + 2.08e31T^{2} \)
37 \( 1 + 1.61e16T + 8.55e32T^{2} \)
41 \( 1 - 5.77e16T + 7.38e33T^{2} \)
43 \( 1 + 2.01e17T + 2.00e34T^{2} \)
47 \( 1 + 6.62e17T + 1.30e35T^{2} \)
53 \( 1 + 4.62e17T + 1.62e36T^{2} \)
59 \( 1 + 7.39e18T + 1.54e37T^{2} \)
61 \( 1 + 5.50e18T + 3.10e37T^{2} \)
67 \( 1 - 6.03e18T + 2.22e38T^{2} \)
71 \( 1 - 4.43e19T + 7.52e38T^{2} \)
73 \( 1 + 2.48e19T + 1.34e39T^{2} \)
79 \( 1 - 5.70e19T + 7.08e39T^{2} \)
83 \( 1 - 1.31e20T + 1.99e40T^{2} \)
89 \( 1 + 3.97e20T + 8.65e40T^{2} \)
97 \( 1 + 9.80e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.87871796778748621256790579525, −9.690575790865853775684483994100, −8.190820405314183444288306552996, −7.77375010557620459885317962115, −6.50635782985139357177628329216, −5.02704929673258641833563406993, −4.14018377004506080324451053794, −3.05833843530439779117578168841, −1.82802370500270526100977500640, −0.05217144082355000123165536703, 0.05217144082355000123165536703, 1.82802370500270526100977500640, 3.05833843530439779117578168841, 4.14018377004506080324451053794, 5.02704929673258641833563406993, 6.50635782985139357177628329216, 7.77375010557620459885317962115, 8.190820405314183444288306552996, 9.690575790865853775684483994100, 10.87871796778748621256790579525

Graph of the $Z$-function along the critical line