Properties

Label 2-7105-1.1-c1-0-76
Degree $2$
Conductor $7105$
Sign $1$
Analytic cond. $56.7337$
Root an. cond. $7.53217$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.53·2-s − 1.70·3-s + 0.369·4-s + 5-s − 2.63·6-s − 2.51·8-s − 0.0783·9-s + 1.53·10-s + 0.290·11-s − 0.630·12-s + 0.921·13-s − 1.70·15-s − 4.60·16-s − 4.97·17-s − 0.120·18-s + 6.04·19-s + 0.369·20-s + 0.447·22-s + 2.29·23-s + 4.29·24-s + 25-s + 1.41·26-s + 5.26·27-s + 29-s − 2.63·30-s − 10.0·31-s − 2.06·32-s + ⋯
L(s)  = 1  + 1.08·2-s − 0.986·3-s + 0.184·4-s + 0.447·5-s − 1.07·6-s − 0.887·8-s − 0.0261·9-s + 0.486·10-s + 0.0876·11-s − 0.182·12-s + 0.255·13-s − 0.441·15-s − 1.15·16-s − 1.20·17-s − 0.0284·18-s + 1.38·19-s + 0.0825·20-s + 0.0954·22-s + 0.477·23-s + 0.875·24-s + 0.200·25-s + 0.278·26-s + 1.01·27-s + 0.185·29-s − 0.480·30-s − 1.80·31-s − 0.364·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7105 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7105\)    =    \(5 \cdot 7^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(56.7337\)
Root analytic conductor: \(7.53217\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7105,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.781767023\)
\(L(\frac12)\) \(\approx\) \(1.781767023\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - 1.53T + 2T^{2} \)
3 \( 1 + 1.70T + 3T^{2} \)
11 \( 1 - 0.290T + 11T^{2} \)
13 \( 1 - 0.921T + 13T^{2} \)
17 \( 1 + 4.97T + 17T^{2} \)
19 \( 1 - 6.04T + 19T^{2} \)
23 \( 1 - 2.29T + 23T^{2} \)
31 \( 1 + 10.0T + 31T^{2} \)
37 \( 1 - 1.55T + 37T^{2} \)
41 \( 1 + 0.340T + 41T^{2} \)
43 \( 1 + 5.70T + 43T^{2} \)
47 \( 1 - 1.12T + 47T^{2} \)
53 \( 1 + 0.340T + 53T^{2} \)
59 \( 1 + 9.75T + 59T^{2} \)
61 \( 1 + 3.07T + 61T^{2} \)
67 \( 1 + 5.70T + 67T^{2} \)
71 \( 1 - 9.07T + 71T^{2} \)
73 \( 1 - 6.94T + 73T^{2} \)
79 \( 1 - 12.3T + 79T^{2} \)
83 \( 1 + 2.78T + 83T^{2} \)
89 \( 1 + 4.73T + 89T^{2} \)
97 \( 1 - 15.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71983554201898612762952923797, −6.84442233808994624872928968177, −6.28323307723683848375078905184, −5.71225388993724954396940018456, −5.07964149422724064593600065280, −4.67904783222469732572063344348, −3.64090498196216460981247967540, −2.99789715820288830093119916784, −1.91796295955425399063877915868, −0.59100725320952630174146608315, 0.59100725320952630174146608315, 1.91796295955425399063877915868, 2.99789715820288830093119916784, 3.64090498196216460981247967540, 4.67904783222469732572063344348, 5.07964149422724064593600065280, 5.71225388993724954396940018456, 6.28323307723683848375078905184, 6.84442233808994624872928968177, 7.71983554201898612762952923797

Graph of the $Z$-function along the critical line