Properties

Label 2-71-71.19-c1-0-4
Degree $2$
Conductor $71$
Sign $-0.790 + 0.612i$
Analytic cond. $0.566937$
Root an. cond. $0.752952$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.996 − 2.33i)2-s + (0.808 − 0.146i)3-s + (−3.05 + 3.19i)4-s + (−1.11 − 3.44i)5-s + (−1.14 − 1.73i)6-s + (1.50 + 1.31i)7-s + (5.75 + 2.15i)8-s + (−2.17 + 0.816i)9-s + (−6.91 + 6.03i)10-s + (2.16 + 0.597i)11-s + (−2.00 + 3.03i)12-s + (5.25 − 1.45i)13-s + (1.56 − 4.80i)14-s + (−1.41 − 2.62i)15-s + (−0.301 − 6.71i)16-s + (−1.37 − 1.00i)17-s + ⋯
L(s)  = 1  + (−0.704 − 1.64i)2-s + (0.466 − 0.0847i)3-s + (−1.52 + 1.59i)4-s + (−0.500 − 1.54i)5-s + (−0.468 − 0.709i)6-s + (0.567 + 0.496i)7-s + (2.03 + 0.763i)8-s + (−0.725 + 0.272i)9-s + (−2.18 + 1.90i)10-s + (0.652 + 0.180i)11-s + (−0.578 + 0.876i)12-s + (1.45 − 0.402i)13-s + (0.417 − 1.28i)14-s + (−0.364 − 0.676i)15-s + (−0.0754 − 1.67i)16-s + (−0.334 − 0.242i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 71 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.790 + 0.612i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.790 + 0.612i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(71\)
Sign: $-0.790 + 0.612i$
Analytic conductor: \(0.566937\)
Root analytic conductor: \(0.752952\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{71} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 71,\ (\ :1/2),\ -0.790 + 0.612i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.222802 - 0.650785i\)
\(L(\frac12)\) \(\approx\) \(0.222802 - 0.650785i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad71 \( 1 + (-8.02 - 2.58i)T \)
good2 \( 1 + (0.996 + 2.33i)T + (-1.38 + 1.44i)T^{2} \)
3 \( 1 + (-0.808 + 0.146i)T + (2.80 - 1.05i)T^{2} \)
5 \( 1 + (1.11 + 3.44i)T + (-4.04 + 2.93i)T^{2} \)
7 \( 1 + (-1.50 - 1.31i)T + (0.939 + 6.93i)T^{2} \)
11 \( 1 + (-2.16 - 0.597i)T + (9.44 + 5.64i)T^{2} \)
13 \( 1 + (-5.25 + 1.45i)T + (11.1 - 6.66i)T^{2} \)
17 \( 1 + (1.37 + 1.00i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (-1.64 + 3.05i)T + (-10.4 - 15.8i)T^{2} \)
23 \( 1 + (-1.37 - 6.04i)T + (-20.7 + 9.97i)T^{2} \)
29 \( 1 + (0.550 - 4.06i)T + (-27.9 - 7.71i)T^{2} \)
31 \( 1 + (-0.159 + 3.56i)T + (-30.8 - 2.77i)T^{2} \)
37 \( 1 + (1.97 - 8.67i)T + (-33.3 - 16.0i)T^{2} \)
41 \( 1 + (4.28 - 5.37i)T + (-9.12 - 39.9i)T^{2} \)
43 \( 1 + (3.19 - 0.287i)T + (42.3 - 7.67i)T^{2} \)
47 \( 1 + (5.09 + 0.924i)T + (44.0 + 16.5i)T^{2} \)
53 \( 1 + (-0.321 - 0.335i)T + (-2.37 + 52.9i)T^{2} \)
59 \( 1 + (-4.74 + 7.18i)T + (-23.1 - 54.2i)T^{2} \)
61 \( 1 + (1.96 - 1.71i)T + (8.18 - 60.4i)T^{2} \)
67 \( 1 + (-3.07 + 3.21i)T + (-3.00 - 66.9i)T^{2} \)
73 \( 1 + (-0.333 - 0.779i)T + (-50.4 + 52.7i)T^{2} \)
79 \( 1 + (2.75 + 1.03i)T + (59.4 + 51.9i)T^{2} \)
83 \( 1 + (4.19 - 6.34i)T + (-32.6 - 76.3i)T^{2} \)
89 \( 1 + (9.63 + 10.0i)T + (-3.99 + 88.9i)T^{2} \)
97 \( 1 + (-9.09 - 11.4i)T + (-21.5 + 94.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.61356893215205670748364774049, −12.95733426607769602984013813202, −11.61930252688121605629040614291, −11.37741314060731690727952606180, −9.495865327437268352258863592012, −8.643393465543244672391578386874, −8.211263053568373830174272646304, −5.02482693311175095641725978951, −3.46698595672672174246993311378, −1.45024294668587798918381003040, 3.81515232127771226077433115585, 6.08087196596655846479326998173, 6.91498215503052731899151743976, 8.081020095075392383976694058256, 8.899104597765616105827213646930, 10.43705715314499716839550587298, 11.40341380966338053233025326903, 13.95445195538452627836304488460, 14.30149852410709452938267888466, 15.07058163657205507450800929765

Graph of the $Z$-function along the critical line