Properties

Label 2-7098-1.1-c1-0-96
Degree $2$
Conductor $7098$
Sign $-1$
Analytic cond. $56.6778$
Root an. cond. $7.52846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 2.73·5-s − 6-s − 7-s + 8-s + 9-s − 2.73·10-s − 0.267·11-s − 12-s − 14-s + 2.73·15-s + 16-s + 3.73·17-s + 18-s − 2.46·19-s − 2.73·20-s + 21-s − 0.267·22-s − 3.46·23-s − 24-s + 2.46·25-s − 27-s − 28-s − 3·29-s + 2.73·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.22·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 0.333·9-s − 0.863·10-s − 0.0807·11-s − 0.288·12-s − 0.267·14-s + 0.705·15-s + 0.250·16-s + 0.905·17-s + 0.235·18-s − 0.565·19-s − 0.610·20-s + 0.218·21-s − 0.0571·22-s − 0.722·23-s − 0.204·24-s + 0.492·25-s − 0.192·27-s − 0.188·28-s − 0.557·29-s + 0.498·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7098\)    =    \(2 \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(56.6778\)
Root analytic conductor: \(7.52846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7098} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7098,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + 2.73T + 5T^{2} \)
11 \( 1 + 0.267T + 11T^{2} \)
17 \( 1 - 3.73T + 17T^{2} \)
19 \( 1 + 2.46T + 19T^{2} \)
23 \( 1 + 3.46T + 23T^{2} \)
29 \( 1 + 3T + 29T^{2} \)
31 \( 1 - 9.66T + 31T^{2} \)
37 \( 1 - 4.73T + 37T^{2} \)
41 \( 1 - 7T + 41T^{2} \)
43 \( 1 + 2.73T + 43T^{2} \)
47 \( 1 - 2.46T + 47T^{2} \)
53 \( 1 + 3.53T + 53T^{2} \)
59 \( 1 - 12.9T + 59T^{2} \)
61 \( 1 + 8.26T + 61T^{2} \)
67 \( 1 + 0.928T + 67T^{2} \)
71 \( 1 + 8.19T + 71T^{2} \)
73 \( 1 + 13.4T + 73T^{2} \)
79 \( 1 + 16.8T + 79T^{2} \)
83 \( 1 - 11.6T + 83T^{2} \)
89 \( 1 + 0.464T + 89T^{2} \)
97 \( 1 + 2.73T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60491188952005286021430898257, −6.78944660457468836743577281520, −6.08929084243319816379316147130, −5.53776996053441100246173439024, −4.49083805521704451209780337618, −4.16418489296889987459682572543, −3.33888421009879985532914137220, −2.52133487055481954470454049275, −1.17294995297692128885344185238, 0, 1.17294995297692128885344185238, 2.52133487055481954470454049275, 3.33888421009879985532914137220, 4.16418489296889987459682572543, 4.49083805521704451209780337618, 5.53776996053441100246173439024, 6.08929084243319816379316147130, 6.78944660457468836743577281520, 7.60491188952005286021430898257

Graph of the $Z$-function along the critical line