Properties

Label 2-7098-1.1-c1-0-84
Degree $2$
Conductor $7098$
Sign $-1$
Analytic cond. $56.6778$
Root an. cond. $7.52846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 0.356·5-s + 6-s + 7-s − 8-s + 9-s − 0.356·10-s − 3.40·11-s − 12-s − 14-s − 0.356·15-s + 16-s − 2.66·17-s − 18-s − 8.63·19-s + 0.356·20-s − 21-s + 3.40·22-s + 8.29·23-s + 24-s − 4.87·25-s − 27-s + 28-s + 2.21·29-s + 0.356·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.159·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 0.333·9-s − 0.112·10-s − 1.02·11-s − 0.288·12-s − 0.267·14-s − 0.0921·15-s + 0.250·16-s − 0.646·17-s − 0.235·18-s − 1.98·19-s + 0.0798·20-s − 0.218·21-s + 0.726·22-s + 1.72·23-s + 0.204·24-s − 0.974·25-s − 0.192·27-s + 0.188·28-s + 0.412·29-s + 0.0651·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7098\)    =    \(2 \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(56.6778\)
Root analytic conductor: \(7.52846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7098} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7098,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 0.356T + 5T^{2} \)
11 \( 1 + 3.40T + 11T^{2} \)
17 \( 1 + 2.66T + 17T^{2} \)
19 \( 1 + 8.63T + 19T^{2} \)
23 \( 1 - 8.29T + 23T^{2} \)
29 \( 1 - 2.21T + 29T^{2} \)
31 \( 1 - 3.89T + 31T^{2} \)
37 \( 1 - 11.5T + 37T^{2} \)
41 \( 1 - 6.66T + 41T^{2} \)
43 \( 1 - 5.82T + 43T^{2} \)
47 \( 1 + 4.59T + 47T^{2} \)
53 \( 1 - 13.0T + 53T^{2} \)
59 \( 1 + 13.6T + 59T^{2} \)
61 \( 1 + 13.5T + 61T^{2} \)
67 \( 1 + 3.78T + 67T^{2} \)
71 \( 1 - 14.1T + 71T^{2} \)
73 \( 1 + 1.72T + 73T^{2} \)
79 \( 1 - 4.49T + 79T^{2} \)
83 \( 1 + 10.4T + 83T^{2} \)
89 \( 1 - 13.4T + 89T^{2} \)
97 \( 1 + 9.28T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75694781236027676084112750591, −6.87397414212527089686602359988, −6.26204329766499321445636992326, −5.64742534427441715404395395920, −4.69609791820562719735919245814, −4.21384417937094046376613281758, −2.77434688956749138652460658513, −2.24329291388236527287887303178, −1.08806988962437790297298111951, 0, 1.08806988962437790297298111951, 2.24329291388236527287887303178, 2.77434688956749138652460658513, 4.21384417937094046376613281758, 4.69609791820562719735919245814, 5.64742534427441715404395395920, 6.26204329766499321445636992326, 6.87397414212527089686602359988, 7.75694781236027676084112750591

Graph of the $Z$-function along the critical line