Properties

Label 2-7098-1.1-c1-0-8
Degree $2$
Conductor $7098$
Sign $1$
Analytic cond. $56.6778$
Root an. cond. $7.52846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 0.801·5-s + 6-s + 7-s − 8-s + 9-s − 0.801·10-s − 4.04·11-s − 12-s − 14-s − 0.801·15-s + 16-s − 0.753·17-s − 18-s − 0.664·19-s + 0.801·20-s − 21-s + 4.04·22-s − 3.80·23-s + 24-s − 4.35·25-s − 27-s + 28-s − 8.74·29-s + 0.801·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.358·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 0.333·9-s − 0.253·10-s − 1.22·11-s − 0.288·12-s − 0.267·14-s − 0.207·15-s + 0.250·16-s − 0.182·17-s − 0.235·18-s − 0.152·19-s + 0.179·20-s − 0.218·21-s + 0.863·22-s − 0.792·23-s + 0.204·24-s − 0.871·25-s − 0.192·27-s + 0.188·28-s − 1.62·29-s + 0.146·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7098\)    =    \(2 \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(56.6778\)
Root analytic conductor: \(7.52846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7098} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7098,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7750896158\)
\(L(\frac12)\) \(\approx\) \(0.7750896158\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 0.801T + 5T^{2} \)
11 \( 1 + 4.04T + 11T^{2} \)
17 \( 1 + 0.753T + 17T^{2} \)
19 \( 1 + 0.664T + 19T^{2} \)
23 \( 1 + 3.80T + 23T^{2} \)
29 \( 1 + 8.74T + 29T^{2} \)
31 \( 1 + 0.335T + 31T^{2} \)
37 \( 1 - 4.58T + 37T^{2} \)
41 \( 1 + 6.89T + 41T^{2} \)
43 \( 1 + 1.30T + 43T^{2} \)
47 \( 1 - 5.49T + 47T^{2} \)
53 \( 1 - 3.04T + 53T^{2} \)
59 \( 1 - 2.58T + 59T^{2} \)
61 \( 1 - 3.71T + 61T^{2} \)
67 \( 1 - 8.86T + 67T^{2} \)
71 \( 1 - 10.1T + 71T^{2} \)
73 \( 1 + 9.44T + 73T^{2} \)
79 \( 1 - 11.7T + 79T^{2} \)
83 \( 1 + 9.21T + 83T^{2} \)
89 \( 1 + 1.75T + 89T^{2} \)
97 \( 1 - 8.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.930900183762725826318091316920, −7.36498942380222715998351534553, −6.60886452803562823260060312550, −5.69626998492889852549299256364, −5.44801163455606602807500496046, −4.43489139596415729868279831976, −3.53402671260811380479038805376, −2.33665751353803854453521169501, −1.82200851907099318440130465775, −0.49513059618465809282503911797, 0.49513059618465809282503911797, 1.82200851907099318440130465775, 2.33665751353803854453521169501, 3.53402671260811380479038805376, 4.43489139596415729868279831976, 5.44801163455606602807500496046, 5.69626998492889852549299256364, 6.60886452803562823260060312550, 7.36498942380222715998351534553, 7.930900183762725826318091316920

Graph of the $Z$-function along the critical line