Properties

Label 2-7098-1.1-c1-0-54
Degree $2$
Conductor $7098$
Sign $1$
Analytic cond. $56.6778$
Root an. cond. $7.52846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s − 3·11-s + 12-s + 14-s − 15-s + 16-s + 5·17-s + 18-s − 19-s − 20-s + 21-s − 3·22-s + 3·23-s + 24-s − 4·25-s + 27-s + 28-s + 5·29-s − 30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.904·11-s + 0.288·12-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 1.21·17-s + 0.235·18-s − 0.229·19-s − 0.223·20-s + 0.218·21-s − 0.639·22-s + 0.625·23-s + 0.204·24-s − 4/5·25-s + 0.192·27-s + 0.188·28-s + 0.928·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7098\)    =    \(2 \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(56.6778\)
Root analytic conductor: \(7.52846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7098} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7098,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.958021329\)
\(L(\frac12)\) \(\approx\) \(3.958021329\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 5 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 15 T + p T^{2} \)
79 \( 1 - 6 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.018554074218748180230652645681, −7.32358723291061992376380899788, −6.58036304252702918246951516942, −5.60665281756259989416083274676, −5.11598164535596761808756590560, −4.26016343398076698108905494241, −3.59741008341437890140917057006, −2.82904756770057819211838377643, −2.09089047645469757774219452662, −0.893353698788811975215648356235, 0.893353698788811975215648356235, 2.09089047645469757774219452662, 2.82904756770057819211838377643, 3.59741008341437890140917057006, 4.26016343398076698108905494241, 5.11598164535596761808756590560, 5.60665281756259989416083274676, 6.58036304252702918246951516942, 7.32358723291061992376380899788, 8.018554074218748180230652645681

Graph of the $Z$-function along the critical line