Properties

Label 2-7098-1.1-c1-0-45
Degree $2$
Conductor $7098$
Sign $1$
Analytic cond. $56.6778$
Root an. cond. $7.52846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 0.356·5-s − 6-s − 7-s + 8-s + 9-s − 0.356·10-s + 3.40·11-s − 12-s − 14-s + 0.356·15-s + 16-s − 2.66·17-s + 18-s + 8.63·19-s − 0.356·20-s + 21-s + 3.40·22-s + 8.29·23-s − 24-s − 4.87·25-s − 27-s − 28-s + 2.21·29-s + 0.356·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.159·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 0.333·9-s − 0.112·10-s + 1.02·11-s − 0.288·12-s − 0.267·14-s + 0.0921·15-s + 0.250·16-s − 0.646·17-s + 0.235·18-s + 1.98·19-s − 0.0798·20-s + 0.218·21-s + 0.726·22-s + 1.72·23-s − 0.204·24-s − 0.974·25-s − 0.192·27-s − 0.188·28-s + 0.412·29-s + 0.0651·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7098\)    =    \(2 \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(56.6778\)
Root analytic conductor: \(7.52846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7098} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7098,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.751439270\)
\(L(\frac12)\) \(\approx\) \(2.751439270\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + 0.356T + 5T^{2} \)
11 \( 1 - 3.40T + 11T^{2} \)
17 \( 1 + 2.66T + 17T^{2} \)
19 \( 1 - 8.63T + 19T^{2} \)
23 \( 1 - 8.29T + 23T^{2} \)
29 \( 1 - 2.21T + 29T^{2} \)
31 \( 1 + 3.89T + 31T^{2} \)
37 \( 1 + 11.5T + 37T^{2} \)
41 \( 1 + 6.66T + 41T^{2} \)
43 \( 1 - 5.82T + 43T^{2} \)
47 \( 1 - 4.59T + 47T^{2} \)
53 \( 1 - 13.0T + 53T^{2} \)
59 \( 1 - 13.6T + 59T^{2} \)
61 \( 1 + 13.5T + 61T^{2} \)
67 \( 1 - 3.78T + 67T^{2} \)
71 \( 1 + 14.1T + 71T^{2} \)
73 \( 1 - 1.72T + 73T^{2} \)
79 \( 1 - 4.49T + 79T^{2} \)
83 \( 1 - 10.4T + 83T^{2} \)
89 \( 1 + 13.4T + 89T^{2} \)
97 \( 1 - 9.28T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.56264298290887433012800235333, −7.02204619077535888679441898720, −6.62953736193368687120491264964, −5.58385911914567857426757897958, −5.29897141208485115496287136129, −4.34037511374581379055308351965, −3.63678391127054125405137949878, −2.98872046369441584219763531797, −1.76850083322328129889015015279, −0.808399871927129923466486978631, 0.808399871927129923466486978631, 1.76850083322328129889015015279, 2.98872046369441584219763531797, 3.63678391127054125405137949878, 4.34037511374581379055308351965, 5.29897141208485115496287136129, 5.58385911914567857426757897958, 6.62953736193368687120491264964, 7.02204619077535888679441898720, 7.56264298290887433012800235333

Graph of the $Z$-function along the critical line