Properties

Label 2-7098-1.1-c1-0-141
Degree $2$
Conductor $7098$
Sign $-1$
Analytic cond. $56.6778$
Root an. cond. $7.52846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 1.56·5-s − 6-s + 7-s + 8-s + 9-s + 1.56·10-s − 2.56·11-s − 12-s + 14-s − 1.56·15-s + 16-s + 0.123·17-s + 18-s − 2.56·19-s + 1.56·20-s − 21-s − 2.56·22-s − 1.12·23-s − 24-s − 2.56·25-s − 27-s + 28-s − 6.12·29-s − 1.56·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.698·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s + 0.493·10-s − 0.772·11-s − 0.288·12-s + 0.267·14-s − 0.403·15-s + 0.250·16-s + 0.0298·17-s + 0.235·18-s − 0.587·19-s + 0.349·20-s − 0.218·21-s − 0.546·22-s − 0.234·23-s − 0.204·24-s − 0.512·25-s − 0.192·27-s + 0.188·28-s − 1.13·29-s − 0.285·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7098\)    =    \(2 \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(56.6778\)
Root analytic conductor: \(7.52846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7098} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7098,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 1.56T + 5T^{2} \)
11 \( 1 + 2.56T + 11T^{2} \)
17 \( 1 - 0.123T + 17T^{2} \)
19 \( 1 + 2.56T + 19T^{2} \)
23 \( 1 + 1.12T + 23T^{2} \)
29 \( 1 + 6.12T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 2.43T + 37T^{2} \)
41 \( 1 + 11.2T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 + 0.315T + 47T^{2} \)
53 \( 1 - 7T + 53T^{2} \)
59 \( 1 - 5.12T + 59T^{2} \)
61 \( 1 + 11.2T + 61T^{2} \)
67 \( 1 - 9.12T + 67T^{2} \)
71 \( 1 + 11.3T + 71T^{2} \)
73 \( 1 + 2.43T + 73T^{2} \)
79 \( 1 + 6.56T + 79T^{2} \)
83 \( 1 + 5.12T + 83T^{2} \)
89 \( 1 - 3.43T + 89T^{2} \)
97 \( 1 + 0.876T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.39576992358733845219197991413, −6.74879298502279568039819330919, −5.97943218964778306981878203807, −5.46036227218859083512602350990, −4.91785793108166490089740037714, −4.09809188634619236656263257782, −3.22969739252261663427991978943, −2.17281720287222007118309200925, −1.59075018939489262340828414174, 0, 1.59075018939489262340828414174, 2.17281720287222007118309200925, 3.22969739252261663427991978943, 4.09809188634619236656263257782, 4.91785793108166490089740037714, 5.46036227218859083512602350990, 5.97943218964778306981878203807, 6.74879298502279568039819330919, 7.39576992358733845219197991413

Graph of the $Z$-function along the critical line