Properties

Label 2-704-1.1-c1-0-7
Degree $2$
Conductor $704$
Sign $1$
Analytic cond. $5.62146$
Root an. cond. $2.37096$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s − 2·7-s − 2·9-s − 11-s + 4·13-s + 3·15-s + 6·17-s + 8·19-s − 2·21-s + 3·23-s + 4·25-s − 5·27-s − 5·31-s − 33-s − 6·35-s + 37-s + 4·39-s − 10·43-s − 6·45-s − 3·49-s + 6·51-s + 6·53-s − 3·55-s + 8·57-s + 3·59-s + 4·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s − 0.755·7-s − 2/3·9-s − 0.301·11-s + 1.10·13-s + 0.774·15-s + 1.45·17-s + 1.83·19-s − 0.436·21-s + 0.625·23-s + 4/5·25-s − 0.962·27-s − 0.898·31-s − 0.174·33-s − 1.01·35-s + 0.164·37-s + 0.640·39-s − 1.52·43-s − 0.894·45-s − 3/7·49-s + 0.840·51-s + 0.824·53-s − 0.404·55-s + 1.05·57-s + 0.390·59-s + 0.512·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(704\)    =    \(2^{6} \cdot 11\)
Sign: $1$
Analytic conductor: \(5.62146\)
Root analytic conductor: \(2.37096\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.159553409\)
\(L(\frac12)\) \(\approx\) \(2.159553409\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11903216163362853339678805280, −9.610210113213273792621314474885, −8.901169398745525002958448579942, −7.948144712624414981153354525702, −6.87940646463052539617018989539, −5.72427671804102205390312745209, −5.44949075059971672760817509463, −3.47350326380949607246521494930, −2.88597193878705003332421314931, −1.40865503128588890763537566425, 1.40865503128588890763537566425, 2.88597193878705003332421314931, 3.47350326380949607246521494930, 5.44949075059971672760817509463, 5.72427671804102205390312745209, 6.87940646463052539617018989539, 7.948144712624414981153354525702, 8.901169398745525002958448579942, 9.610210113213273792621314474885, 10.11903216163362853339678805280

Graph of the $Z$-function along the critical line