L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (2.64 − 0.707i)5-s + (3.36 − 0.902i)7-s + (0.707 − 0.707i)8-s + (−2.36 − 1.36i)10-s + (1.29 − 1.29i)11-s + (2.77 + 2.29i)13-s + (−3.01 − 1.74i)14-s − 1.00·16-s + (0.419 + 0.726i)17-s + (−6.94 − 1.86i)19-s + (0.707 + 2.64i)20-s − 1.82·22-s + (3.18 + 5.52i)23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (1.18 − 0.316i)5-s + (1.27 − 0.340i)7-s + (0.250 − 0.250i)8-s + (−0.748 − 0.432i)10-s + (0.389 − 0.389i)11-s + (0.770 + 0.637i)13-s + (−0.806 − 0.465i)14-s − 0.250·16-s + (0.101 + 0.176i)17-s + (−1.59 − 0.427i)19-s + (0.158 + 0.590i)20-s − 0.389·22-s + (0.665 + 1.15i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.720 + 0.693i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.720 + 0.693i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.56212 - 0.629826i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56212 - 0.629826i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-2.77 - 2.29i)T \) |
good | 5 | \( 1 + (-2.64 + 0.707i)T + (4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-3.36 + 0.902i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-1.29 + 1.29i)T - 11iT^{2} \) |
| 17 | \( 1 + (-0.419 - 0.726i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.94 + 1.86i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-3.18 - 5.52i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6.05iT - 29T^{2} \) |
| 31 | \( 1 + (1.99 + 7.43i)T + (-26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (4.09 - 1.09i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-1.07 + 4.01i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-7.47 - 4.31i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (7.46 + 2.00i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + 3.92iT - 53T^{2} \) |
| 59 | \( 1 + (-5.26 + 5.26i)T - 59iT^{2} \) |
| 61 | \( 1 + (-0.247 + 0.428i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.34 - 1.43i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (1.48 - 5.55i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (9.66 + 9.66i)T + 73iT^{2} \) |
| 79 | \( 1 + (0.892 + 1.54i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.07 + 15.2i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (0.385 + 1.43i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-4.50 - 16.7i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45936143150338775656224038777, −9.331147867925560732225786025895, −8.852954033344638957831731694054, −8.005606631325938241268372829421, −6.85822214125170866516921436308, −5.85426627161652447526811946212, −4.80697941145460039433301780402, −3.74155083253890917186127000890, −2.06673224650260400720672808099, −1.35385179176965790915060349729,
1.47058505310247295218186695625, 2.45211709201660339443541662416, 4.32910760224077796982068064791, 5.38160920288164943261958959679, 6.14702208241355784572851749656, 6.95025209473239280944314852408, 8.213987577513626398539247332480, 8.644898516824455762856102224329, 9.640715830678897172474216369095, 10.58445176048088926321564296190