| L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (2.53 + 1.46i)5-s + (1.90 − 1.10i)7-s + 0.999i·8-s − 2.93·10-s + (4.47 − 2.58i)11-s + (0.680 − 3.54i)13-s + (−1.10 + 1.90i)14-s + (−0.5 − 0.866i)16-s − 2.31·17-s − 5.16i·19-s + (2.53 − 1.46i)20-s + (−2.58 + 4.47i)22-s + (−4.19 + 7.26i)23-s + ⋯ |
| L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (1.13 + 0.655i)5-s + (0.721 − 0.416i)7-s + 0.353i·8-s − 0.927·10-s + (1.34 − 0.779i)11-s + (0.188 − 0.982i)13-s + (−0.294 + 0.510i)14-s + (−0.125 − 0.216i)16-s − 0.560·17-s − 1.18i·19-s + (0.567 − 0.327i)20-s + (−0.551 + 0.954i)22-s + (−0.874 + 1.51i)23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(0.997−0.0673i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(0.997−0.0673i)Λ(1−s)
| Degree: |
2 |
| Conductor: |
702
= 2⋅33⋅13
|
| Sign: |
0.997−0.0673i
|
| Analytic conductor: |
5.60549 |
| Root analytic conductor: |
2.36759 |
| Motivic weight: |
1 |
| Rational: |
no |
| Arithmetic: |
yes |
| Character: |
χ702(415,⋅)
|
| Primitive: |
yes
|
| Self-dual: |
no
|
| Analytic rank: |
0
|
| Selberg data: |
(2, 702, ( :1/2), 0.997−0.0673i)
|
Particular Values
| L(1) |
≈ |
1.55430+0.0524286i |
| L(21) |
≈ |
1.55430+0.0524286i |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
|---|
| bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 13 | 1+(−0.680+3.54i)T |
| good | 5 | 1+(−2.53−1.46i)T+(2.5+4.33i)T2 |
| 7 | 1+(−1.90+1.10i)T+(3.5−6.06i)T2 |
| 11 | 1+(−4.47+2.58i)T+(5.5−9.52i)T2 |
| 17 | 1+2.31T+17T2 |
| 19 | 1+5.16iT−19T2 |
| 23 | 1+(4.19−7.26i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.72+8.18i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−5.38−3.11i)T+(15.5+26.8i)T2 |
| 37 | 1−0.646iT−37T2 |
| 41 | 1+(0.674+0.389i)T+(20.5+35.5i)T2 |
| 43 | 1+(1.74+3.02i)T+(−21.5+37.2i)T2 |
| 47 | 1+(4.79−2.76i)T+(23.5−40.7i)T2 |
| 53 | 1−8.68T+53T2 |
| 59 | 1+(−2.59−1.49i)T+(29.5+51.0i)T2 |
| 61 | 1+(−0.432−0.748i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−9.68−5.58i)T+(33.5+58.0i)T2 |
| 71 | 1−12.9iT−71T2 |
| 73 | 1−4.27iT−73T2 |
| 79 | 1+(−1.52−2.63i)T+(−39.5+68.4i)T2 |
| 83 | 1+(3.19−1.84i)T+(41.5−71.8i)T2 |
| 89 | 1+3.34iT−89T2 |
| 97 | 1+(−1.29+0.745i)T+(48.5−84.0i)T2 |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25984156281714405233784983164, −9.645283445047116281014597892240, −8.773351123218174604043928957730, −7.892749799027155314944085049108, −6.87592862132687420124617124055, −6.14747640731431856750092873503, −5.36159742671088979106186781352, −3.89112073650897991948232031280, −2.45254401083262215578841471986, −1.17704384331646912915202843204,
1.59106626614899714877848119821, 2.03637927466372211988026117283, 3.97030661419768999517583371419, 4.89811689205850065609341816916, 6.13780528528259468443349241371, 6.83057075489685691830519796196, 8.207068916023249583444840723750, 8.881403753247296241350480053546, 9.509231372288929850338608872828, 10.20430439583584331645325359765