Properties

Label 2-700-35.9-c1-0-1
Degree $2$
Conductor $700$
Sign $0.185 - 0.982i$
Analytic cond. $5.58952$
Root an. cond. $2.36421$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)3-s + (−1.73 + 2i)7-s + (−1 + 1.73i)9-s + (1.5 + 2.59i)11-s + 2i·13-s + (−2.59 + 1.5i)17-s + (−0.5 + 0.866i)19-s + (−0.499 + 2.59i)21-s + (−2.59 − 1.5i)23-s + 5i·27-s + 6·29-s + (3.5 + 6.06i)31-s + (2.59 + 1.5i)33-s + (−0.866 − 0.5i)37-s + (1 + 1.73i)39-s + ⋯
L(s)  = 1  + (0.499 − 0.288i)3-s + (−0.654 + 0.755i)7-s + (−0.333 + 0.577i)9-s + (0.452 + 0.783i)11-s + 0.554i·13-s + (−0.630 + 0.363i)17-s + (−0.114 + 0.198i)19-s + (−0.109 + 0.566i)21-s + (−0.541 − 0.312i)23-s + 0.962i·27-s + 1.11·29-s + (0.628 + 1.08i)31-s + (0.452 + 0.261i)33-s + (−0.142 − 0.0821i)37-s + (0.160 + 0.277i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.185 - 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.185 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $0.185 - 0.982i$
Analytic conductor: \(5.58952\)
Root analytic conductor: \(2.36421\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{700} (149, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :1/2),\ 0.185 - 0.982i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.06178 + 0.879988i\)
\(L(\frac12)\) \(\approx\) \(1.06178 + 0.879988i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + (1.73 - 2i)T \)
good3 \( 1 + (-0.866 + 0.5i)T + (1.5 - 2.59i)T^{2} \)
11 \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 + (2.59 - 1.5i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.5 - 0.866i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (2.59 + 1.5i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + (-3.5 - 6.06i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (0.866 + 0.5i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + (7.79 + 4.5i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-2.59 + 1.5i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-4.5 - 7.79i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.5 + 0.866i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-6.06 + 3.5i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + (0.866 - 0.5i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (6.5 - 11.2i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 + (-7.5 + 12.9i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51158942955886414524007769717, −9.702650609091851689372898489662, −8.775295305273272733110146387051, −8.277978880480883859635194670734, −7.03205833141030878966178964370, −6.38719467063778965646577524395, −5.21655766996772904948754582958, −4.11086253759040976385742962966, −2.78977830424068671079950438877, −1.89529636746624568587643586417, 0.67332281596585373974923149882, 2.74432547150436190087870837135, 3.58943943013354949596307518958, 4.50534004762689415947944390747, 6.00337271504048701634095107857, 6.59397572795414659931038445589, 7.78383071455577516978756509009, 8.601890673690162313869960100227, 9.463916053288079298959744041567, 10.07129323016138876527103486133

Graph of the $Z$-function along the critical line