L(s) = 1 | + (−0.366 − 1.36i)2-s − 1.73·3-s + (−1.73 + i)4-s + (0.633 + 2.36i)6-s + (−1.73 − 2i)7-s + (2 + 1.99i)8-s + 0.267i·11-s + (2.99 − 1.73i)12-s + 0.464i·13-s + (−2.09 + 3.09i)14-s + (1.99 − 3.46i)16-s + 6.46i·17-s − 6·19-s + (2.99 + 3.46i)21-s + (0.366 − 0.0980i)22-s − 1.46i·23-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s − 1.00·3-s + (−0.866 + 0.5i)4-s + (0.258 + 0.965i)6-s + (−0.654 − 0.755i)7-s + (0.707 + 0.707i)8-s + 0.0807i·11-s + (0.866 − 0.499i)12-s + 0.128i·13-s + (−0.560 + 0.827i)14-s + (0.499 − 0.866i)16-s + 1.56i·17-s − 1.37·19-s + (0.654 + 0.755i)21-s + (0.0780 − 0.0209i)22-s − 0.305i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 + 0.327i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.944 + 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.566473 - 0.0953369i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.566473 - 0.0953369i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.366 + 1.36i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (1.73 + 2i)T \) |
good | 3 | \( 1 + 1.73T + 3T^{2} \) |
| 11 | \( 1 - 0.267iT - 11T^{2} \) |
| 13 | \( 1 - 0.464iT - 13T^{2} \) |
| 17 | \( 1 - 6.46iT - 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 23 | \( 1 + 1.46iT - 23T^{2} \) |
| 29 | \( 1 - 7.92T + 29T^{2} \) |
| 31 | \( 1 - 6T + 31T^{2} \) |
| 37 | \( 1 - 9.46T + 37T^{2} \) |
| 41 | \( 1 + 3.46iT - 41T^{2} \) |
| 43 | \( 1 + 2iT - 43T^{2} \) |
| 47 | \( 1 - 1.73T + 47T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 - 3.46T + 59T^{2} \) |
| 61 | \( 1 - 9.46iT - 61T^{2} \) |
| 67 | \( 1 - 3.46iT - 67T^{2} \) |
| 71 | \( 1 - 7.46iT - 71T^{2} \) |
| 73 | \( 1 + 12.9iT - 73T^{2} \) |
| 79 | \( 1 - 14.6iT - 79T^{2} \) |
| 83 | \( 1 - 15.4T + 83T^{2} \) |
| 89 | \( 1 - 2.53iT - 89T^{2} \) |
| 97 | \( 1 - 13.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50902797929184277072667839479, −9.998059493193729099519372654609, −8.764687198701634143337064636817, −8.053008855433997247202009104733, −6.67450551672930849786619109366, −6.00145135498016421227176469775, −4.63197027447726963819828443750, −3.93191817566789420835583005662, −2.55836021125705032684102506303, −0.899508843648121097689387714738,
0.53070849022740900579759320909, 2.80762299733371432146553395012, 4.53590527265417600062382932324, 5.26038683804315955313386208851, 6.32267782374629733809024737040, 6.51939265017407653763431927850, 7.86023260382316220329521041059, 8.734233910293262493093276743107, 9.550920362884854476395566086113, 10.33575888662204612586371631720