| L(s) = 1 | − 26·3-s + 49·7-s + 433·9-s + 8·11-s − 684·13-s + 2.21e3·17-s − 2.69e3·19-s − 1.27e3·21-s − 3.34e3·23-s − 4.94e3·27-s − 3.25e3·29-s + 4.78e3·31-s − 208·33-s + 1.14e4·37-s + 1.77e4·39-s + 1.33e4·41-s + 928·43-s − 1.21e3·47-s + 2.40e3·49-s − 5.76e4·51-s − 1.31e4·53-s + 7.01e4·57-s + 3.47e4·59-s − 1.03e3·61-s + 2.12e4·63-s − 1.01e4·67-s + 8.69e4·69-s + ⋯ |
| L(s) = 1 | − 1.66·3-s + 0.377·7-s + 1.78·9-s + 0.0199·11-s − 1.12·13-s + 1.86·17-s − 1.71·19-s − 0.630·21-s − 1.31·23-s − 1.30·27-s − 0.718·29-s + 0.894·31-s − 0.0332·33-s + 1.37·37-s + 1.87·39-s + 1.24·41-s + 0.0765·43-s − 0.0800·47-s + 1/7·49-s − 3.10·51-s − 0.641·53-s + 2.85·57-s + 1.29·59-s − 0.0355·61-s + 0.673·63-s − 0.275·67-s + 2.19·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 - p^{2} T \) |
| good | 3 | \( 1 + 26 T + p^{5} T^{2} \) |
| 11 | \( 1 - 8 T + p^{5} T^{2} \) |
| 13 | \( 1 + 684 T + p^{5} T^{2} \) |
| 17 | \( 1 - 2218 T + p^{5} T^{2} \) |
| 19 | \( 1 + 142 p T + p^{5} T^{2} \) |
| 23 | \( 1 + 3344 T + p^{5} T^{2} \) |
| 29 | \( 1 + 3254 T + p^{5} T^{2} \) |
| 31 | \( 1 - 4788 T + p^{5} T^{2} \) |
| 37 | \( 1 - 310 p T + p^{5} T^{2} \) |
| 41 | \( 1 - 13350 T + p^{5} T^{2} \) |
| 43 | \( 1 - 928 T + p^{5} T^{2} \) |
| 47 | \( 1 + 1212 T + p^{5} T^{2} \) |
| 53 | \( 1 + 13110 T + p^{5} T^{2} \) |
| 59 | \( 1 - 34702 T + p^{5} T^{2} \) |
| 61 | \( 1 + 1032 T + p^{5} T^{2} \) |
| 67 | \( 1 + 10108 T + p^{5} T^{2} \) |
| 71 | \( 1 - 62720 T + p^{5} T^{2} \) |
| 73 | \( 1 - 18926 T + p^{5} T^{2} \) |
| 79 | \( 1 - 11400 T + p^{5} T^{2} \) |
| 83 | \( 1 + 88958 T + p^{5} T^{2} \) |
| 89 | \( 1 - 19722 T + p^{5} T^{2} \) |
| 97 | \( 1 + 17062 T + p^{5} T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.680502425962292682814716426679, −8.145179569346561198062213799034, −7.42465475231344526213666456244, −6.32273470786634628775480589273, −5.72676723397607884860896281951, −4.83932256698970835893016868749, −4.02467563989218638298573147870, −2.28631920904601609289071920075, −0.997768753580229263825297700438, 0,
0.997768753580229263825297700438, 2.28631920904601609289071920075, 4.02467563989218638298573147870, 4.83932256698970835893016868749, 5.72676723397607884860896281951, 6.32273470786634628775480589273, 7.42465475231344526213666456244, 8.145179569346561198062213799034, 9.680502425962292682814716426679