Properties

Label 2-700-1.1-c5-0-24
Degree $2$
Conductor $700$
Sign $-1$
Analytic cond. $112.268$
Root an. cond. $10.5956$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 26·3-s + 49·7-s + 433·9-s + 8·11-s − 684·13-s + 2.21e3·17-s − 2.69e3·19-s − 1.27e3·21-s − 3.34e3·23-s − 4.94e3·27-s − 3.25e3·29-s + 4.78e3·31-s − 208·33-s + 1.14e4·37-s + 1.77e4·39-s + 1.33e4·41-s + 928·43-s − 1.21e3·47-s + 2.40e3·49-s − 5.76e4·51-s − 1.31e4·53-s + 7.01e4·57-s + 3.47e4·59-s − 1.03e3·61-s + 2.12e4·63-s − 1.01e4·67-s + 8.69e4·69-s + ⋯
L(s)  = 1  − 1.66·3-s + 0.377·7-s + 1.78·9-s + 0.0199·11-s − 1.12·13-s + 1.86·17-s − 1.71·19-s − 0.630·21-s − 1.31·23-s − 1.30·27-s − 0.718·29-s + 0.894·31-s − 0.0332·33-s + 1.37·37-s + 1.87·39-s + 1.24·41-s + 0.0765·43-s − 0.0800·47-s + 1/7·49-s − 3.10·51-s − 0.641·53-s + 2.85·57-s + 1.29·59-s − 0.0355·61-s + 0.673·63-s − 0.275·67-s + 2.19·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(112.268\)
Root analytic conductor: \(10.5956\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 700,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - p^{2} T \)
good3 \( 1 + 26 T + p^{5} T^{2} \)
11 \( 1 - 8 T + p^{5} T^{2} \)
13 \( 1 + 684 T + p^{5} T^{2} \)
17 \( 1 - 2218 T + p^{5} T^{2} \)
19 \( 1 + 142 p T + p^{5} T^{2} \)
23 \( 1 + 3344 T + p^{5} T^{2} \)
29 \( 1 + 3254 T + p^{5} T^{2} \)
31 \( 1 - 4788 T + p^{5} T^{2} \)
37 \( 1 - 310 p T + p^{5} T^{2} \)
41 \( 1 - 13350 T + p^{5} T^{2} \)
43 \( 1 - 928 T + p^{5} T^{2} \)
47 \( 1 + 1212 T + p^{5} T^{2} \)
53 \( 1 + 13110 T + p^{5} T^{2} \)
59 \( 1 - 34702 T + p^{5} T^{2} \)
61 \( 1 + 1032 T + p^{5} T^{2} \)
67 \( 1 + 10108 T + p^{5} T^{2} \)
71 \( 1 - 62720 T + p^{5} T^{2} \)
73 \( 1 - 18926 T + p^{5} T^{2} \)
79 \( 1 - 11400 T + p^{5} T^{2} \)
83 \( 1 + 88958 T + p^{5} T^{2} \)
89 \( 1 - 19722 T + p^{5} T^{2} \)
97 \( 1 + 17062 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.680502425962292682814716426679, −8.145179569346561198062213799034, −7.42465475231344526213666456244, −6.32273470786634628775480589273, −5.72676723397607884860896281951, −4.83932256698970835893016868749, −4.02467563989218638298573147870, −2.28631920904601609289071920075, −0.997768753580229263825297700438, 0, 0.997768753580229263825297700438, 2.28631920904601609289071920075, 4.02467563989218638298573147870, 4.83932256698970835893016868749, 5.72676723397607884860896281951, 6.32273470786634628775480589273, 7.42465475231344526213666456244, 8.145179569346561198062213799034, 9.680502425962292682814716426679

Graph of the $Z$-function along the critical line