| L(s) = 1 | − 4·3-s − 7·7-s − 11·9-s − 12·11-s + 82·13-s + 30·17-s + 68·19-s + 28·21-s − 216·23-s + 152·27-s + 246·29-s − 112·31-s + 48·33-s − 110·37-s − 328·39-s − 246·41-s + 172·43-s − 192·47-s + 49·49-s − 120·51-s − 558·53-s − 272·57-s + 540·59-s + 110·61-s + 77·63-s − 140·67-s + 864·69-s + ⋯ |
| L(s) = 1 | − 0.769·3-s − 0.377·7-s − 0.407·9-s − 0.328·11-s + 1.74·13-s + 0.428·17-s + 0.821·19-s + 0.290·21-s − 1.95·23-s + 1.08·27-s + 1.57·29-s − 0.648·31-s + 0.253·33-s − 0.488·37-s − 1.34·39-s − 0.937·41-s + 0.609·43-s − 0.595·47-s + 1/7·49-s − 0.329·51-s − 1.44·53-s − 0.632·57-s + 1.19·59-s + 0.230·61-s + 0.153·63-s − 0.255·67-s + 1.50·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + p T \) |
| good | 3 | \( 1 + 4 T + p^{3} T^{2} \) |
| 11 | \( 1 + 12 T + p^{3} T^{2} \) |
| 13 | \( 1 - 82 T + p^{3} T^{2} \) |
| 17 | \( 1 - 30 T + p^{3} T^{2} \) |
| 19 | \( 1 - 68 T + p^{3} T^{2} \) |
| 23 | \( 1 + 216 T + p^{3} T^{2} \) |
| 29 | \( 1 - 246 T + p^{3} T^{2} \) |
| 31 | \( 1 + 112 T + p^{3} T^{2} \) |
| 37 | \( 1 + 110 T + p^{3} T^{2} \) |
| 41 | \( 1 + 6 p T + p^{3} T^{2} \) |
| 43 | \( 1 - 4 p T + p^{3} T^{2} \) |
| 47 | \( 1 + 192 T + p^{3} T^{2} \) |
| 53 | \( 1 + 558 T + p^{3} T^{2} \) |
| 59 | \( 1 - 540 T + p^{3} T^{2} \) |
| 61 | \( 1 - 110 T + p^{3} T^{2} \) |
| 67 | \( 1 + 140 T + p^{3} T^{2} \) |
| 71 | \( 1 + 840 T + p^{3} T^{2} \) |
| 73 | \( 1 - 550 T + p^{3} T^{2} \) |
| 79 | \( 1 + 208 T + p^{3} T^{2} \) |
| 83 | \( 1 + 516 T + p^{3} T^{2} \) |
| 89 | \( 1 + 1398 T + p^{3} T^{2} \) |
| 97 | \( 1 + 1586 T + p^{3} T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.824534535444736393360971976686, −8.632013842436056915010106690352, −8.022326298776415156122080265756, −6.69982066208537100979911062295, −5.99223084513934842475474184116, −5.32073503935097225800223353303, −3.98996572450602387798519540016, −2.98433511020767117727399390022, −1.32888057154590103210472452356, 0,
1.32888057154590103210472452356, 2.98433511020767117727399390022, 3.98996572450602387798519540016, 5.32073503935097225800223353303, 5.99223084513934842475474184116, 6.69982066208537100979911062295, 8.022326298776415156122080265756, 8.632013842436056915010106690352, 9.824534535444736393360971976686