Properties

Label 2-700-1.1-c3-0-16
Degree $2$
Conductor $700$
Sign $-1$
Analytic cond. $41.3013$
Root an. cond. $6.42661$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7·3-s + 7·7-s + 22·9-s − 7·11-s − 3·13-s − 61·17-s + 48·19-s − 49·21-s − 58·23-s + 35·27-s + 219·29-s + 298·31-s + 49·33-s + 170·37-s + 21·39-s + 50·41-s − 484·43-s − 131·47-s + 49·49-s + 427·51-s − 210·53-s − 336·57-s − 782·59-s + 488·61-s + 154·63-s − 494·67-s + 406·69-s + ⋯
L(s)  = 1  − 1.34·3-s + 0.377·7-s + 0.814·9-s − 0.191·11-s − 0.0640·13-s − 0.870·17-s + 0.579·19-s − 0.509·21-s − 0.525·23-s + 0.249·27-s + 1.40·29-s + 1.72·31-s + 0.258·33-s + 0.755·37-s + 0.0862·39-s + 0.190·41-s − 1.71·43-s − 0.406·47-s + 1/7·49-s + 1.17·51-s − 0.544·53-s − 0.780·57-s − 1.72·59-s + 1.02·61-s + 0.307·63-s − 0.900·67-s + 0.708·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(41.3013\)
Root analytic conductor: \(6.42661\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 700,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - p T \)
good3 \( 1 + 7 T + p^{3} T^{2} \)
11 \( 1 + 7 T + p^{3} T^{2} \)
13 \( 1 + 3 T + p^{3} T^{2} \)
17 \( 1 + 61 T + p^{3} T^{2} \)
19 \( 1 - 48 T + p^{3} T^{2} \)
23 \( 1 + 58 T + p^{3} T^{2} \)
29 \( 1 - 219 T + p^{3} T^{2} \)
31 \( 1 - 298 T + p^{3} T^{2} \)
37 \( 1 - 170 T + p^{3} T^{2} \)
41 \( 1 - 50 T + p^{3} T^{2} \)
43 \( 1 + 484 T + p^{3} T^{2} \)
47 \( 1 + 131 T + p^{3} T^{2} \)
53 \( 1 + 210 T + p^{3} T^{2} \)
59 \( 1 + 782 T + p^{3} T^{2} \)
61 \( 1 - 8 p T + p^{3} T^{2} \)
67 \( 1 + 494 T + p^{3} T^{2} \)
71 \( 1 + 240 T + p^{3} T^{2} \)
73 \( 1 + 58 T + p^{3} T^{2} \)
79 \( 1 + 1065 T + p^{3} T^{2} \)
83 \( 1 + 1036 T + p^{3} T^{2} \)
89 \( 1 - 608 T + p^{3} T^{2} \)
97 \( 1 - 1339 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.961648579108541590530163162551, −8.706205754026126333519495680957, −7.83410753476126920214675159652, −6.67178988323883805070741709260, −6.10569258626740417124170733859, −5.01616750526410377050193877277, −4.44064820003552335328788621536, −2.80702106357602276264079818460, −1.25236998558974372685885174302, 0, 1.25236998558974372685885174302, 2.80702106357602276264079818460, 4.44064820003552335328788621536, 5.01616750526410377050193877277, 6.10569258626740417124170733859, 6.67178988323883805070741709260, 7.83410753476126920214675159652, 8.706205754026126333519495680957, 9.961648579108541590530163162551

Graph of the $Z$-function along the critical line