Properties

Label 2-70-5.4-c3-0-5
Degree $2$
Conductor $70$
Sign $-0.894 + 0.447i$
Analytic cond. $4.13013$
Root an. cond. $2.03227$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·2-s − 7i·3-s − 4·4-s + (10 − 5i)5-s − 14·6-s − 7i·7-s + 8i·8-s − 22·9-s + (−10 − 20i)10-s − 37·11-s + 28i·12-s + 51i·13-s − 14·14-s + (−35 − 70i)15-s + 16·16-s − 41i·17-s + ⋯
L(s)  = 1  − 0.707i·2-s − 1.34i·3-s − 0.5·4-s + (0.894 − 0.447i)5-s − 0.952·6-s − 0.377i·7-s + 0.353i·8-s − 0.814·9-s + (−0.316 − 0.632i)10-s − 1.01·11-s + 0.673i·12-s + 1.08i·13-s − 0.267·14-s + (−0.602 − 1.20i)15-s + 0.250·16-s − 0.584i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70\)    =    \(2 \cdot 5 \cdot 7\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(4.13013\)
Root analytic conductor: \(2.03227\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{70} (29, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 70,\ (\ :3/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.338622 - 1.43442i\)
\(L(\frac12)\) \(\approx\) \(0.338622 - 1.43442i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2iT \)
5 \( 1 + (-10 + 5i)T \)
7 \( 1 + 7iT \)
good3 \( 1 + 7iT - 27T^{2} \)
11 \( 1 + 37T + 1.33e3T^{2} \)
13 \( 1 - 51iT - 2.19e3T^{2} \)
17 \( 1 + 41iT - 4.91e3T^{2} \)
19 \( 1 - 108T + 6.85e3T^{2} \)
23 \( 1 + 70iT - 1.21e4T^{2} \)
29 \( 1 - 249T + 2.43e4T^{2} \)
31 \( 1 + 134T + 2.97e4T^{2} \)
37 \( 1 - 334iT - 5.06e4T^{2} \)
41 \( 1 - 206T + 6.89e4T^{2} \)
43 \( 1 + 376iT - 7.95e4T^{2} \)
47 \( 1 - 287iT - 1.03e5T^{2} \)
53 \( 1 + 6iT - 1.48e5T^{2} \)
59 \( 1 - 2T + 2.05e5T^{2} \)
61 \( 1 + 940T + 2.26e5T^{2} \)
67 \( 1 + 106iT - 3.00e5T^{2} \)
71 \( 1 - 456T + 3.57e5T^{2} \)
73 \( 1 - 650iT - 3.89e5T^{2} \)
79 \( 1 - 1.23e3T + 4.93e5T^{2} \)
83 \( 1 - 428iT - 5.71e5T^{2} \)
89 \( 1 - 220T + 7.04e5T^{2} \)
97 \( 1 - 1.05e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.69891548369657476228828402675, −12.66087495841957018935546270111, −11.83451835575880977850606259165, −10.39445098877789195841852273401, −9.209710868199050433289692142871, −7.83490811575240044174261710539, −6.53912637881253195178942533153, −4.96533861786912371008243909024, −2.49723879914460301259313473329, −1.08181718597291226594940416913, 3.16164617336304600474876871373, 5.05328577804960084359990535266, 5.85196397332882706266720027416, 7.68636113125550124844878375250, 9.158416182249837633016151765760, 10.06365754421865754019791259563, 10.82667295576835483070048417340, 12.75209081584646640439851691702, 13.90514877564448857311366002736, 14.95874643872354539388060303324

Graph of the $Z$-function along the critical line