Properties

Label 2-70-1.1-c5-0-9
Degree $2$
Conductor $70$
Sign $-1$
Analytic cond. $11.2268$
Root an. cond. $3.35065$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 11·3-s + 16·4-s − 25·5-s − 44·6-s + 49·7-s + 64·8-s − 122·9-s − 100·10-s − 267·11-s − 176·12-s − 1.08e3·13-s + 196·14-s + 275·15-s + 256·16-s − 513·17-s − 488·18-s − 802·19-s − 400·20-s − 539·21-s − 1.06e3·22-s − 1.29e3·23-s − 704·24-s + 625·25-s − 4.34e3·26-s + 4.01e3·27-s + 784·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.705·3-s + 1/2·4-s − 0.447·5-s − 0.498·6-s + 0.377·7-s + 0.353·8-s − 0.502·9-s − 0.316·10-s − 0.665·11-s − 0.352·12-s − 1.78·13-s + 0.267·14-s + 0.315·15-s + 1/4·16-s − 0.430·17-s − 0.355·18-s − 0.509·19-s − 0.223·20-s − 0.266·21-s − 0.470·22-s − 0.508·23-s − 0.249·24-s + 1/5·25-s − 1.26·26-s + 1.05·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70\)    =    \(2 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(11.2268\)
Root analytic conductor: \(3.35065\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 70,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
5 \( 1 + p^{2} T \)
7 \( 1 - p^{2} T \)
good3 \( 1 + 11 T + p^{5} T^{2} \)
11 \( 1 + 267 T + p^{5} T^{2} \)
13 \( 1 + 1087 T + p^{5} T^{2} \)
17 \( 1 + 513 T + p^{5} T^{2} \)
19 \( 1 + 802 T + p^{5} T^{2} \)
23 \( 1 + 1290 T + p^{5} T^{2} \)
29 \( 1 - 1779 T + p^{5} T^{2} \)
31 \( 1 + 2584 T + p^{5} T^{2} \)
37 \( 1 - 13862 T + p^{5} T^{2} \)
41 \( 1 + 11904 T + p^{5} T^{2} \)
43 \( 1 + 598 T + p^{5} T^{2} \)
47 \( 1 + 17019 T + p^{5} T^{2} \)
53 \( 1 - 27852 T + p^{5} T^{2} \)
59 \( 1 - 30912 T + p^{5} T^{2} \)
61 \( 1 + 1780 T + p^{5} T^{2} \)
67 \( 1 - 25052 T + p^{5} T^{2} \)
71 \( 1 + 51984 T + p^{5} T^{2} \)
73 \( 1 - 47690 T + p^{5} T^{2} \)
79 \( 1 + 102121 T + p^{5} T^{2} \)
83 \( 1 + 83676 T + p^{5} T^{2} \)
89 \( 1 + 32400 T + p^{5} T^{2} \)
97 \( 1 + 148645 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99719828855372312971155156771, −12.01299511998533687622010518081, −11.26247644964533050705817943924, −10.09037948412878920255178156308, −8.224972691902582676820528287811, −6.97074267821956090598598919501, −5.51099302948056373394525686586, −4.52160768341924032493976031559, −2.55783861976934664316050668074, 0, 2.55783861976934664316050668074, 4.52160768341924032493976031559, 5.51099302948056373394525686586, 6.97074267821956090598598919501, 8.224972691902582676820528287811, 10.09037948412878920255178156308, 11.26247644964533050705817943924, 12.01299511998533687622010518081, 12.99719828855372312971155156771

Graph of the $Z$-function along the critical line