Properties

Label 2-70-1.1-c5-0-4
Degree $2$
Conductor $70$
Sign $-1$
Analytic cond. $11.2268$
Root an. cond. $3.35065$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 23·3-s + 16·4-s + 25·5-s + 92·6-s + 49·7-s − 64·8-s + 286·9-s − 100·10-s + 555·11-s − 368·12-s − 241·13-s − 196·14-s − 575·15-s + 256·16-s − 1.49e3·17-s − 1.14e3·18-s − 2.03e3·19-s + 400·20-s − 1.12e3·21-s − 2.22e3·22-s − 1.23e3·23-s + 1.47e3·24-s + 625·25-s + 964·26-s − 989·27-s + 784·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.47·3-s + 1/2·4-s + 0.447·5-s + 1.04·6-s + 0.377·7-s − 0.353·8-s + 1.17·9-s − 0.316·10-s + 1.38·11-s − 0.737·12-s − 0.395·13-s − 0.267·14-s − 0.659·15-s + 1/4·16-s − 1.25·17-s − 0.832·18-s − 1.29·19-s + 0.223·20-s − 0.557·21-s − 0.977·22-s − 0.484·23-s + 0.521·24-s + 1/5·25-s + 0.279·26-s − 0.261·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70\)    =    \(2 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(11.2268\)
Root analytic conductor: \(3.35065\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 70,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
5 \( 1 - p^{2} T \)
7 \( 1 - p^{2} T \)
good3 \( 1 + 23 T + p^{5} T^{2} \)
11 \( 1 - 555 T + p^{5} T^{2} \)
13 \( 1 + 241 T + p^{5} T^{2} \)
17 \( 1 + 1491 T + p^{5} T^{2} \)
19 \( 1 + 2038 T + p^{5} T^{2} \)
23 \( 1 + 1230 T + p^{5} T^{2} \)
29 \( 1 + 5001 T + p^{5} T^{2} \)
31 \( 1 - 5696 T + p^{5} T^{2} \)
37 \( 1 + 5602 T + p^{5} T^{2} \)
41 \( 1 + 2424 T + p^{5} T^{2} \)
43 \( 1 - 14 p T + p^{5} T^{2} \)
47 \( 1 + 23163 T + p^{5} T^{2} \)
53 \( 1 + 25296 T + p^{5} T^{2} \)
59 \( 1 - 5724 T + p^{5} T^{2} \)
61 \( 1 + 592 p T + p^{5} T^{2} \)
67 \( 1 - 66104 T + p^{5} T^{2} \)
71 \( 1 - 16080 T + p^{5} T^{2} \)
73 \( 1 + 80482 T + p^{5} T^{2} \)
79 \( 1 + 64147 T + p^{5} T^{2} \)
83 \( 1 + 106284 T + p^{5} T^{2} \)
89 \( 1 + 71676 T + p^{5} T^{2} \)
97 \( 1 - 151025 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.80198363756953519382522454739, −11.68776992082247466515443419629, −11.02999957150292822004770496216, −9.901868181372084924565514745975, −8.656320103035259773295247366183, −6.84079142069725668911533326435, −6.09160417362886682952965522090, −4.53436748796406010279818102551, −1.69479601722826609433478555422, 0, 1.69479601722826609433478555422, 4.53436748796406010279818102551, 6.09160417362886682952965522090, 6.84079142069725668911533326435, 8.656320103035259773295247366183, 9.901868181372084924565514745975, 11.02999957150292822004770496216, 11.68776992082247466515443419629, 12.80198363756953519382522454739

Graph of the $Z$-function along the critical line