Properties

Label 2-70-1.1-c5-0-3
Degree $2$
Conductor $70$
Sign $1$
Analytic cond. $11.2268$
Root an. cond. $3.35065$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 14.3·3-s + 16·4-s + 25·5-s − 57.2·6-s + 49·7-s + 64·8-s − 38.5·9-s + 100·10-s + 425.·11-s − 228.·12-s + 399.·13-s + 196·14-s − 357.·15-s + 256·16-s + 1.75e3·17-s − 154.·18-s + 2.87e3·19-s + 400·20-s − 700.·21-s + 1.70e3·22-s − 2.31e3·23-s − 915.·24-s + 625·25-s + 1.59e3·26-s + 4.02e3·27-s + 784·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.917·3-s + 0.5·4-s + 0.447·5-s − 0.648·6-s + 0.377·7-s + 0.353·8-s − 0.158·9-s + 0.316·10-s + 1.06·11-s − 0.458·12-s + 0.655·13-s + 0.267·14-s − 0.410·15-s + 0.250·16-s + 1.46·17-s − 0.112·18-s + 1.82·19-s + 0.223·20-s − 0.346·21-s + 0.750·22-s − 0.911·23-s − 0.324·24-s + 0.200·25-s + 0.463·26-s + 1.06·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70\)    =    \(2 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(11.2268\)
Root analytic conductor: \(3.35065\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 70,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.365222516\)
\(L(\frac12)\) \(\approx\) \(2.365222516\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
5 \( 1 - 25T \)
7 \( 1 - 49T \)
good3 \( 1 + 14.3T + 243T^{2} \)
11 \( 1 - 425.T + 1.61e5T^{2} \)
13 \( 1 - 399.T + 3.71e5T^{2} \)
17 \( 1 - 1.75e3T + 1.41e6T^{2} \)
19 \( 1 - 2.87e3T + 2.47e6T^{2} \)
23 \( 1 + 2.31e3T + 6.43e6T^{2} \)
29 \( 1 + 2.12e3T + 2.05e7T^{2} \)
31 \( 1 + 1.02e4T + 2.86e7T^{2} \)
37 \( 1 + 7.26e3T + 6.93e7T^{2} \)
41 \( 1 + 5.89e3T + 1.15e8T^{2} \)
43 \( 1 - 2.01e4T + 1.47e8T^{2} \)
47 \( 1 - 2.00e4T + 2.29e8T^{2} \)
53 \( 1 + 3.39e4T + 4.18e8T^{2} \)
59 \( 1 + 4.31e3T + 7.14e8T^{2} \)
61 \( 1 + 1.22e4T + 8.44e8T^{2} \)
67 \( 1 + 1.75e4T + 1.35e9T^{2} \)
71 \( 1 - 1.65e3T + 1.80e9T^{2} \)
73 \( 1 + 8.24e3T + 2.07e9T^{2} \)
79 \( 1 + 9.16e3T + 3.07e9T^{2} \)
83 \( 1 - 9.52e4T + 3.93e9T^{2} \)
89 \( 1 + 1.44e4T + 5.58e9T^{2} \)
97 \( 1 - 6.21e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.94833495074810686294813597795, −12.36956813207223721330526075829, −11.69409130232467703355032397723, −10.70357815259358497715109754637, −9.289018081123149098751154123694, −7.49446706262649018256359447616, −6.01388239806070753905759773399, −5.33008247810111230407124841199, −3.56482832318045962041040716571, −1.31364771836085385253028848026, 1.31364771836085385253028848026, 3.56482832318045962041040716571, 5.33008247810111230407124841199, 6.01388239806070753905759773399, 7.49446706262649018256359447616, 9.289018081123149098751154123694, 10.70357815259358497715109754637, 11.69409130232467703355032397723, 12.36956813207223721330526075829, 13.94833495074810686294813597795

Graph of the $Z$-function along the critical line