Properties

Label 2-7-7.5-c6-0-0
Degree $2$
Conductor $7$
Sign $-0.547 - 0.836i$
Analytic cond. $1.61037$
Root an. cond. $1.26900$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.12 + 7.13i)2-s + (−23.0 + 13.3i)3-s + (−1.97 − 3.41i)4-s + (68.5 + 39.5i)5-s − 219. i·6-s + (337. − 62.3i)7-s − 495.·8-s + (−9.46 + 16.3i)9-s + (−565. + 326. i)10-s + (854. + 1.47e3i)11-s + (90.9 + 52.5i)12-s − 3.12e3i·13-s + (−945. + 2.66e3i)14-s − 2.10e3·15-s + (2.16e3 − 3.75e3i)16-s + (3.52e3 − 2.03e3i)17-s + ⋯
L(s)  = 1  + (−0.515 + 0.892i)2-s + (−0.854 + 0.493i)3-s + (−0.0307 − 0.0533i)4-s + (0.548 + 0.316i)5-s − 1.01i·6-s + (0.983 − 0.181i)7-s − 0.966·8-s + (−0.0129 + 0.0224i)9-s + (−0.565 + 0.326i)10-s + (0.641 + 1.11i)11-s + (0.0526 + 0.0303i)12-s − 1.42i·13-s + (−0.344 + 0.971i)14-s − 0.625·15-s + (0.528 − 0.916i)16-s + (0.718 − 0.414i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.547 - 0.836i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.547 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $-0.547 - 0.836i$
Analytic conductor: \(1.61037\)
Root analytic conductor: \(1.26900\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{7} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :3),\ -0.547 - 0.836i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.392441 + 0.725960i\)
\(L(\frac12)\) \(\approx\) \(0.392441 + 0.725960i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-337. + 62.3i)T \)
good2 \( 1 + (4.12 - 7.13i)T + (-32 - 55.4i)T^{2} \)
3 \( 1 + (23.0 - 13.3i)T + (364.5 - 631. i)T^{2} \)
5 \( 1 + (-68.5 - 39.5i)T + (7.81e3 + 1.35e4i)T^{2} \)
11 \( 1 + (-854. - 1.47e3i)T + (-8.85e5 + 1.53e6i)T^{2} \)
13 \( 1 + 3.12e3iT - 4.82e6T^{2} \)
17 \( 1 + (-3.52e3 + 2.03e3i)T + (1.20e7 - 2.09e7i)T^{2} \)
19 \( 1 + (-5.08e3 - 2.93e3i)T + (2.35e7 + 4.07e7i)T^{2} \)
23 \( 1 + (6.66e3 - 1.15e4i)T + (-7.40e7 - 1.28e8i)T^{2} \)
29 \( 1 - 6.51e3T + 5.94e8T^{2} \)
31 \( 1 + (1.03e4 - 5.99e3i)T + (4.43e8 - 7.68e8i)T^{2} \)
37 \( 1 + (-2.32e3 + 4.01e3i)T + (-1.28e9 - 2.22e9i)T^{2} \)
41 \( 1 + 1.93e4iT - 4.75e9T^{2} \)
43 \( 1 - 9.16e4T + 6.32e9T^{2} \)
47 \( 1 + (5.58e4 + 3.22e4i)T + (5.38e9 + 9.33e9i)T^{2} \)
53 \( 1 + (7.47e4 + 1.29e5i)T + (-1.10e10 + 1.91e10i)T^{2} \)
59 \( 1 + (-5.28e4 + 3.05e4i)T + (2.10e10 - 3.65e10i)T^{2} \)
61 \( 1 + (8.54e4 + 4.93e4i)T + (2.57e10 + 4.46e10i)T^{2} \)
67 \( 1 + (-1.55e5 - 2.70e5i)T + (-4.52e10 + 7.83e10i)T^{2} \)
71 \( 1 + 4.01e5T + 1.28e11T^{2} \)
73 \( 1 + (5.82e5 - 3.36e5i)T + (7.56e10 - 1.31e11i)T^{2} \)
79 \( 1 + (-1.60e5 + 2.77e5i)T + (-1.21e11 - 2.10e11i)T^{2} \)
83 \( 1 + 8.32e5iT - 3.26e11T^{2} \)
89 \( 1 + (-3.28e5 - 1.89e5i)T + (2.48e11 + 4.30e11i)T^{2} \)
97 \( 1 - 1.05e6iT - 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.92492369889387006153809046895, −20.49725066381162632822203702931, −17.79189939412151491478449576421, −17.49623702039371620406802091964, −15.97358525768217344279719003086, −14.51524115741466337099841943885, −11.86703896165371847302246270065, −10.04192242648353687159038956289, −7.68496695202889220788515278751, −5.57324835393045564923158776619, 1.30502508342190098794537976476, 5.99406924309418701021070553956, 9.092525462748972678962028411747, 11.16143097698837600049576952302, 12.02469954154241117430666997732, 14.27772228077999752197697306604, 16.79197978979911381534904226460, 18.00902535343896506852554774437, 19.08522690273589804101437867361, 20.78965722205587640760447996730

Graph of the $Z$-function along the critical line