L(s) = 1 | + (−6.5 − 11.2i)7-s + (0.5 − 0.866i)13-s − 11·19-s + (−12.5 − 21.6i)25-s + (−23 + 39.8i)31-s + 47·37-s + (−11 − 19.0i)43-s + (−59.9 + 103. i)49-s + (60.5 + 104. i)61-s + (−54.5 + 94.3i)67-s − 97·73-s + (65.5 + 113. i)79-s − 12.9·91-s + (−83.5 − 144. i)97-s + (−18.5 + 32.0i)103-s + ⋯ |
L(s) = 1 | + (−0.928 − 1.60i)7-s + (0.0384 − 0.0666i)13-s − 0.578·19-s + (−0.5 − 0.866i)25-s + (−0.741 + 1.28i)31-s + 1.27·37-s + (−0.255 − 0.443i)43-s + (−1.22 + 2.12i)49-s + (0.991 + 1.71i)61-s + (−0.813 + 1.40i)67-s − 1.32·73-s + (0.829 + 1.43i)79-s − 0.142·91-s + (−0.860 − 1.49i)97-s + (−0.179 + 0.311i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.1012881697\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1012881697\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (12.5 + 21.6i)T^{2} \) |
| 7 | \( 1 + (6.5 + 11.2i)T + (-24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T + (-84.5 - 146. i)T^{2} \) |
| 17 | \( 1 - 289T^{2} \) |
| 19 | \( 1 + 11T + 361T^{2} \) |
| 23 | \( 1 + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (23 - 39.8i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 - 47T + 1.36e3T^{2} \) |
| 41 | \( 1 + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (11 + 19.0i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 2.80e3T^{2} \) |
| 59 | \( 1 + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-60.5 - 104. i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (54.5 - 94.3i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 5.04e3T^{2} \) |
| 73 | \( 1 + 97T + 5.32e3T^{2} \) |
| 79 | \( 1 + (-65.5 - 113. i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 - 7.92e3T^{2} \) |
| 97 | \( 1 + (83.5 + 144. i)T + (-4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.973708604743540965086335375492, −9.004176202495395048045421298372, −8.061029544396139141582433814426, −7.17308505336157637722294690235, −6.64503213971802430032652054959, −5.68781367111092981616130953656, −4.38776303088010611944344675765, −3.81323554035523544175143810644, −2.72677701092446994315697369618, −1.16296145795035519375209442411,
0.03071236791959787649490781463, 1.94080993767876118580718709252, 2.83465129213179932479027971862, 3.83285804115538318324925771124, 5.08733167273317602577875824718, 5.94348905687114331346657746190, 6.44515477515060847351979149442, 7.62044227715444970228970023877, 8.460275830729901603170063166151, 9.405728234474972368846950593356