Properties

Label 2-6e4-9.4-c1-0-15
Degree $2$
Conductor $1296$
Sign $-0.766 + 0.642i$
Analytic cond. $10.3486$
Root an. cond. $3.21692$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2 + 3.46i)5-s + (−1.5 − 2.59i)7-s + (2 + 3.46i)11-s + (−0.5 + 0.866i)13-s − 4·17-s + 19-s + (2 − 3.46i)23-s + (−5.49 − 9.52i)25-s + (−2 + 3.46i)31-s + 12·35-s − 9·37-s + (−4 − 6.92i)43-s + (−6 − 10.3i)47-s + (−1 + 1.73i)49-s − 8·53-s + ⋯
L(s)  = 1  + (−0.894 + 1.54i)5-s + (−0.566 − 0.981i)7-s + (0.603 + 1.04i)11-s + (−0.138 + 0.240i)13-s − 0.970·17-s + 0.229·19-s + (0.417 − 0.722i)23-s + (−1.09 − 1.90i)25-s + (−0.359 + 0.622i)31-s + 2.02·35-s − 1.47·37-s + (−0.609 − 1.05i)43-s + (−0.875 − 1.51i)47-s + (−0.142 + 0.247i)49-s − 1.09·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $-0.766 + 0.642i$
Analytic conductor: \(10.3486\)
Root analytic conductor: \(3.21692\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1296} (433, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 1296,\ (\ :1/2),\ -0.766 + 0.642i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (2 - 3.46i)T + (-2.5 - 4.33i)T^{2} \)
7 \( 1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-2 - 3.46i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (0.5 - 0.866i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + 4T + 17T^{2} \)
19 \( 1 - T + 19T^{2} \)
23 \( 1 + (-2 + 3.46i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (2 - 3.46i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 9T + 37T^{2} \)
41 \( 1 + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (4 + 6.92i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (6 + 10.3i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + 8T + 53T^{2} \)
59 \( 1 + (-2 + 3.46i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-2.5 - 4.33i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-5.5 + 9.52i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 - T + 73T^{2} \)
79 \( 1 + (2.5 + 4.33i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-4 - 6.92i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 - 12T + 89T^{2} \)
97 \( 1 + (2.5 + 4.33i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.500649251207420568219218988039, −8.445952931243158883147403713774, −7.36656014966167808402898350612, −6.80814427043802261992235946776, −6.63157983898903221583972715568, −4.87336213796623534854101082262, −3.90451297928513085658154998130, −3.34050857360392175056115680779, −2.07877301648297611464705464658, 0, 1.40099024325289169355249570498, 3.02658042727998162700121981244, 3.95468530329711412549310601519, 4.94500255728065287148824078363, 5.67241571895452984371100486874, 6.58988464463012920252897554945, 7.79823939270221944414961945552, 8.485723398831119828084220288601, 9.099326134506888976388389403865

Graph of the $Z$-function along the critical line