Properties

Label 2-6e4-3.2-c4-0-37
Degree $2$
Conductor $1296$
Sign $-i$
Analytic cond. $133.967$
Root an. cond. $11.5744$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11.7i·5-s + 53.2·7-s + 124. i·11-s − 74.6·13-s + 7.70i·17-s + 54.1·19-s − 399. i·23-s + 486.·25-s + 540. i·29-s + 1.53e3·31-s + 627. i·35-s − 1.71e3·37-s + 1.25e3i·41-s + 2.60e3·43-s − 800. i·47-s + ⋯
L(s)  = 1  + 0.471i·5-s + 1.08·7-s + 1.03i·11-s − 0.441·13-s + 0.0266i·17-s + 0.149·19-s − 0.756i·23-s + 0.777·25-s + 0.642i·29-s + 1.59·31-s + 0.512i·35-s − 1.25·37-s + 0.749i·41-s + 1.41·43-s − 0.362i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $-i$
Analytic conductor: \(133.967\)
Root analytic conductor: \(11.5744\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{1296} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1296,\ (\ :2),\ -i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(2.342919937\)
\(L(\frac12)\) \(\approx\) \(2.342919937\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 11.7iT - 625T^{2} \)
7 \( 1 - 53.2T + 2.40e3T^{2} \)
11 \( 1 - 124. iT - 1.46e4T^{2} \)
13 \( 1 + 74.6T + 2.85e4T^{2} \)
17 \( 1 - 7.70iT - 8.35e4T^{2} \)
19 \( 1 - 54.1T + 1.30e5T^{2} \)
23 \( 1 + 399. iT - 2.79e5T^{2} \)
29 \( 1 - 540. iT - 7.07e5T^{2} \)
31 \( 1 - 1.53e3T + 9.23e5T^{2} \)
37 \( 1 + 1.71e3T + 1.87e6T^{2} \)
41 \( 1 - 1.25e3iT - 2.82e6T^{2} \)
43 \( 1 - 2.60e3T + 3.41e6T^{2} \)
47 \( 1 + 800. iT - 4.87e6T^{2} \)
53 \( 1 - 4.22e3iT - 7.89e6T^{2} \)
59 \( 1 - 3.33e3iT - 1.21e7T^{2} \)
61 \( 1 + 15.0T + 1.38e7T^{2} \)
67 \( 1 + 5.18e3T + 2.01e7T^{2} \)
71 \( 1 + 1.92e3iT - 2.54e7T^{2} \)
73 \( 1 - 949.T + 2.83e7T^{2} \)
79 \( 1 - 237.T + 3.89e7T^{2} \)
83 \( 1 + 1.31e4iT - 4.74e7T^{2} \)
89 \( 1 - 575. iT - 6.27e7T^{2} \)
97 \( 1 - 1.51e4T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.256979593654561003032695766585, −8.480993763972760476646317094186, −7.57795336946395800906972560773, −7.02240864407560447773465126024, −6.03971068762959332941779573789, −4.83188623922463622698675349298, −4.48618923443973612501139920325, −3.03901251843940475758832853205, −2.13212818577923400884185404776, −1.08076036736390509993263442631, 0.51226952419249827361436490443, 1.44021390928757119958994332191, 2.60860625150699030442978122356, 3.75690782835403294379042801723, 4.80403538047130576839158153460, 5.37665595958360212338390511400, 6.36951516277166737883424748341, 7.43586795103745088266855876985, 8.206164421144511680704959724699, 8.737256806895729106917464269414

Graph of the $Z$-function along the critical line