Properties

Label 2-6e4-3.2-c4-0-27
Degree $2$
Conductor $1296$
Sign $-i$
Analytic cond. $133.967$
Root an. cond. $11.5744$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16.0i·5-s − 72.4·7-s + 96.1i·11-s + 153.·13-s − 72.7i·17-s + 190.·19-s + 14.4i·23-s + 368.·25-s − 716. i·29-s + 302.·31-s − 1.16e3i·35-s + 826.·37-s + 556. i·41-s − 892.·43-s − 3.95e3i·47-s + ⋯
L(s)  = 1  + 0.640i·5-s − 1.47·7-s + 0.794i·11-s + 0.910·13-s − 0.251i·17-s + 0.528·19-s + 0.0273i·23-s + 0.589·25-s − 0.851i·29-s + 0.314·31-s − 0.948i·35-s + 0.603·37-s + 0.330i·41-s − 0.482·43-s − 1.79i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $-i$
Analytic conductor: \(133.967\)
Root analytic conductor: \(11.5744\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{1296} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1296,\ (\ :2),\ -i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.530704487\)
\(L(\frac12)\) \(\approx\) \(1.530704487\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 16.0iT - 625T^{2} \)
7 \( 1 + 72.4T + 2.40e3T^{2} \)
11 \( 1 - 96.1iT - 1.46e4T^{2} \)
13 \( 1 - 153.T + 2.85e4T^{2} \)
17 \( 1 + 72.7iT - 8.35e4T^{2} \)
19 \( 1 - 190.T + 1.30e5T^{2} \)
23 \( 1 - 14.4iT - 2.79e5T^{2} \)
29 \( 1 + 716. iT - 7.07e5T^{2} \)
31 \( 1 - 302.T + 9.23e5T^{2} \)
37 \( 1 - 826.T + 1.87e6T^{2} \)
41 \( 1 - 556. iT - 2.82e6T^{2} \)
43 \( 1 + 892.T + 3.41e6T^{2} \)
47 \( 1 + 3.95e3iT - 4.87e6T^{2} \)
53 \( 1 - 1.96e3iT - 7.89e6T^{2} \)
59 \( 1 + 5.41e3iT - 1.21e7T^{2} \)
61 \( 1 + 1.71e3T + 1.38e7T^{2} \)
67 \( 1 - 4.63e3T + 2.01e7T^{2} \)
71 \( 1 - 6.69e3iT - 2.54e7T^{2} \)
73 \( 1 + 4.82e3T + 2.83e7T^{2} \)
79 \( 1 - 5.72e3T + 3.89e7T^{2} \)
83 \( 1 - 2.83e3iT - 4.74e7T^{2} \)
89 \( 1 - 1.42e4iT - 6.27e7T^{2} \)
97 \( 1 - 7.16e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.547450938030331685515918045916, −8.562677689044465291667174997952, −7.53320136336786082354250592844, −6.69413598627838397647309111316, −6.28604937251032857746673689610, −5.17805626552366852994528974794, −3.94309479581978942882794924851, −3.20993056884104875664987040177, −2.31579799268157651734015535985, −0.833244027289874798280417489511, 0.41440921846529108194341980701, 1.31988882234329695579897577441, 2.93796611606663355729874219580, 3.51960641260163592194384492173, 4.62050558125584099414358526361, 5.76737711255901165392963241981, 6.27440209847218288521792267889, 7.19159601140844609263289069168, 8.293985712311680217346364299729, 8.947022329011180775833295054427

Graph of the $Z$-function along the critical line