Properties

Label 2-6e4-1.1-c3-0-52
Degree $2$
Conductor $1296$
Sign $-1$
Analytic cond. $76.4664$
Root an. cond. $8.74451$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·5-s + 31·7-s + 15·11-s − 37·13-s − 42·17-s + 28·19-s − 195·23-s − 44·25-s + 111·29-s + 205·31-s − 279·35-s − 166·37-s − 261·41-s + 43·43-s − 177·47-s + 618·49-s + 114·53-s − 135·55-s − 159·59-s + 191·61-s + 333·65-s + 421·67-s − 156·71-s + 182·73-s + 465·77-s − 1.13e3·79-s + 1.08e3·83-s + ⋯
L(s)  = 1  − 0.804·5-s + 1.67·7-s + 0.411·11-s − 0.789·13-s − 0.599·17-s + 0.338·19-s − 1.76·23-s − 0.351·25-s + 0.710·29-s + 1.18·31-s − 1.34·35-s − 0.737·37-s − 0.994·41-s + 0.152·43-s − 0.549·47-s + 1.80·49-s + 0.295·53-s − 0.330·55-s − 0.350·59-s + 0.400·61-s + 0.635·65-s + 0.767·67-s − 0.260·71-s + 0.291·73-s + 0.688·77-s − 1.61·79-s + 1.43·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(76.4664\)
Root analytic conductor: \(8.74451\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1296,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 9 T + p^{3} T^{2} \)
7 \( 1 - 31 T + p^{3} T^{2} \)
11 \( 1 - 15 T + p^{3} T^{2} \)
13 \( 1 + 37 T + p^{3} T^{2} \)
17 \( 1 + 42 T + p^{3} T^{2} \)
19 \( 1 - 28 T + p^{3} T^{2} \)
23 \( 1 + 195 T + p^{3} T^{2} \)
29 \( 1 - 111 T + p^{3} T^{2} \)
31 \( 1 - 205 T + p^{3} T^{2} \)
37 \( 1 + 166 T + p^{3} T^{2} \)
41 \( 1 + 261 T + p^{3} T^{2} \)
43 \( 1 - p T + p^{3} T^{2} \)
47 \( 1 + 177 T + p^{3} T^{2} \)
53 \( 1 - 114 T + p^{3} T^{2} \)
59 \( 1 + 159 T + p^{3} T^{2} \)
61 \( 1 - 191 T + p^{3} T^{2} \)
67 \( 1 - 421 T + p^{3} T^{2} \)
71 \( 1 + 156 T + p^{3} T^{2} \)
73 \( 1 - 182 T + p^{3} T^{2} \)
79 \( 1 + 1133 T + p^{3} T^{2} \)
83 \( 1 - 1083 T + p^{3} T^{2} \)
89 \( 1 + 1050 T + p^{3} T^{2} \)
97 \( 1 + 901 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.555952263065632215573131097331, −8.120433312263270411665501158933, −7.44834574192343762624598795112, −6.49043535108031052114607135032, −5.29314082416548591816985004384, −4.54509982270863392689303606111, −3.86939324004544099989531941640, −2.41890159076111044036778997660, −1.42106134641550147578522896322, 0, 1.42106134641550147578522896322, 2.41890159076111044036778997660, 3.86939324004544099989531941640, 4.54509982270863392689303606111, 5.29314082416548591816985004384, 6.49043535108031052114607135032, 7.44834574192343762624598795112, 8.120433312263270411665501158933, 8.555952263065632215573131097331

Graph of the $Z$-function along the critical line