Properties

Label 2-6e4-1.1-c3-0-44
Degree $2$
Conductor $1296$
Sign $1$
Analytic cond. $76.4664$
Root an. cond. $8.74451$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.1·5-s + 29.1·7-s + 19.5·11-s + 60.1·13-s + 102.·17-s + 113.·19-s − 14.8·23-s − 21.4·25-s − 68.1·29-s + 158.·31-s + 296.·35-s − 75.8·37-s − 364.·41-s − 291.·43-s + 454.·47-s + 508.·49-s − 560.·53-s + 198.·55-s + 359.·59-s + 383.·61-s + 612.·65-s − 736.·67-s − 360.·71-s − 1.01e3·73-s + 569.·77-s + 592.·79-s + 231.·83-s + ⋯
L(s)  = 1  + 0.910·5-s + 1.57·7-s + 0.535·11-s + 1.28·13-s + 1.46·17-s + 1.37·19-s − 0.134·23-s − 0.171·25-s − 0.436·29-s + 0.920·31-s + 1.43·35-s − 0.336·37-s − 1.38·41-s − 1.03·43-s + 1.41·47-s + 1.48·49-s − 1.45·53-s + 0.487·55-s + 0.792·59-s + 0.803·61-s + 1.16·65-s − 1.34·67-s − 0.602·71-s − 1.61·73-s + 0.843·77-s + 0.843·79-s + 0.305·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(76.4664\)
Root analytic conductor: \(8.74451\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1296,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.009517226\)
\(L(\frac12)\) \(\approx\) \(4.009517226\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 10.1T + 125T^{2} \)
7 \( 1 - 29.1T + 343T^{2} \)
11 \( 1 - 19.5T + 1.33e3T^{2} \)
13 \( 1 - 60.1T + 2.19e3T^{2} \)
17 \( 1 - 102.T + 4.91e3T^{2} \)
19 \( 1 - 113.T + 6.85e3T^{2} \)
23 \( 1 + 14.8T + 1.21e4T^{2} \)
29 \( 1 + 68.1T + 2.43e4T^{2} \)
31 \( 1 - 158.T + 2.97e4T^{2} \)
37 \( 1 + 75.8T + 5.06e4T^{2} \)
41 \( 1 + 364.T + 6.89e4T^{2} \)
43 \( 1 + 291.T + 7.95e4T^{2} \)
47 \( 1 - 454.T + 1.03e5T^{2} \)
53 \( 1 + 560.T + 1.48e5T^{2} \)
59 \( 1 - 359.T + 2.05e5T^{2} \)
61 \( 1 - 383.T + 2.26e5T^{2} \)
67 \( 1 + 736.T + 3.00e5T^{2} \)
71 \( 1 + 360.T + 3.57e5T^{2} \)
73 \( 1 + 1.01e3T + 3.89e5T^{2} \)
79 \( 1 - 592.T + 4.93e5T^{2} \)
83 \( 1 - 231.T + 5.71e5T^{2} \)
89 \( 1 + 1.32e3T + 7.04e5T^{2} \)
97 \( 1 + 472.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.313044607207130713659480139693, −8.381304378534260556122253889295, −7.84006312459919360732546333023, −6.79687110780454979653843406580, −5.68220853430738012977334977898, −5.33123063187051831503448494545, −4.14766203234155087515126307363, −3.09527695360003947584973962079, −1.60090226685674035153945986285, −1.24259206601098229504536875904, 1.24259206601098229504536875904, 1.60090226685674035153945986285, 3.09527695360003947584973962079, 4.14766203234155087515126307363, 5.33123063187051831503448494545, 5.68220853430738012977334977898, 6.79687110780454979653843406580, 7.84006312459919360732546333023, 8.381304378534260556122253889295, 9.313044607207130713659480139693

Graph of the $Z$-function along the critical line