Properties

Label 2-6e4-1.1-c3-0-4
Degree $2$
Conductor $1296$
Sign $1$
Analytic cond. $76.4664$
Root an. cond. $8.74451$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.99·5-s − 15.5·7-s − 34.8·11-s − 80.6·13-s − 70.1·17-s + 4.25·19-s − 118.·23-s − 89.0·25-s + 123.·29-s + 185.·31-s + 93.3·35-s + 151.·37-s + 212.·41-s − 290.·43-s + 212.·47-s − 100.·49-s − 556.·53-s + 209.·55-s + 853.·59-s − 688.·61-s + 483.·65-s + 915.·67-s − 786.·71-s − 993.·73-s + 543.·77-s + 568.·79-s + 747.·83-s + ⋯
L(s)  = 1  − 0.536·5-s − 0.841·7-s − 0.956·11-s − 1.72·13-s − 1.00·17-s + 0.0513·19-s − 1.07·23-s − 0.712·25-s + 0.790·29-s + 1.07·31-s + 0.450·35-s + 0.673·37-s + 0.809·41-s − 1.02·43-s + 0.659·47-s − 0.292·49-s − 1.44·53-s + 0.512·55-s + 1.88·59-s − 1.44·61-s + 0.922·65-s + 1.66·67-s − 1.31·71-s − 1.59·73-s + 0.804·77-s + 0.809·79-s + 0.987·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(76.4664\)
Root analytic conductor: \(8.74451\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1296,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4840550977\)
\(L(\frac12)\) \(\approx\) \(0.4840550977\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 5.99T + 125T^{2} \)
7 \( 1 + 15.5T + 343T^{2} \)
11 \( 1 + 34.8T + 1.33e3T^{2} \)
13 \( 1 + 80.6T + 2.19e3T^{2} \)
17 \( 1 + 70.1T + 4.91e3T^{2} \)
19 \( 1 - 4.25T + 6.85e3T^{2} \)
23 \( 1 + 118.T + 1.21e4T^{2} \)
29 \( 1 - 123.T + 2.43e4T^{2} \)
31 \( 1 - 185.T + 2.97e4T^{2} \)
37 \( 1 - 151.T + 5.06e4T^{2} \)
41 \( 1 - 212.T + 6.89e4T^{2} \)
43 \( 1 + 290.T + 7.95e4T^{2} \)
47 \( 1 - 212.T + 1.03e5T^{2} \)
53 \( 1 + 556.T + 1.48e5T^{2} \)
59 \( 1 - 853.T + 2.05e5T^{2} \)
61 \( 1 + 688.T + 2.26e5T^{2} \)
67 \( 1 - 915.T + 3.00e5T^{2} \)
71 \( 1 + 786.T + 3.57e5T^{2} \)
73 \( 1 + 993.T + 3.89e5T^{2} \)
79 \( 1 - 568.T + 4.93e5T^{2} \)
83 \( 1 - 747.T + 5.71e5T^{2} \)
89 \( 1 - 1.01e3T + 7.04e5T^{2} \)
97 \( 1 + 1.21e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.516171358796272324197126054261, −8.294555175383088795614254959853, −7.71547299028531919141740144728, −6.86725384568123500840375783809, −6.03825119578950386742472813584, −4.92388872884699414186969772677, −4.21010312836848021237484981351, −2.96739829218898489470898038379, −2.24286290815623580933120733424, −0.32454447779393009031655204773, 0.32454447779393009031655204773, 2.24286290815623580933120733424, 2.96739829218898489470898038379, 4.21010312836848021237484981351, 4.92388872884699414186969772677, 6.03825119578950386742472813584, 6.86725384568123500840375783809, 7.71547299028531919141740144728, 8.294555175383088795614254959853, 9.516171358796272324197126054261

Graph of the $Z$-function along the critical line