| L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 0.999·8-s + (−0.5 + 0.866i)11-s + (−0.5 + 0.866i)16-s + 17-s − 19-s + (0.499 + 0.866i)22-s + (−0.5 + 0.866i)25-s + (0.499 + 0.866i)32-s + (0.5 − 0.866i)34-s + (−0.5 + 0.866i)38-s + (−0.5 − 0.866i)41-s + (0.5 − 0.866i)43-s + 0.999·44-s + ⋯ |
| L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 0.999·8-s + (−0.5 + 0.866i)11-s + (−0.5 + 0.866i)16-s + 17-s − 19-s + (0.499 + 0.866i)22-s + (−0.5 + 0.866i)25-s + (0.499 + 0.866i)32-s + (0.5 − 0.866i)34-s + (−0.5 + 0.866i)38-s + (−0.5 − 0.866i)41-s + (0.5 − 0.866i)43-s + 0.999·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8257943004\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8257943004\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + 2T + T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.43047215731515122245881153187, −11.50416066905037812463826442051, −10.45068527584334776278651051760, −9.785940083012428641225926651121, −8.628332674260032220341229115632, −7.27330252395249658553950690551, −5.85262563460310281494664278878, −4.80359899466792150821964388887, −3.54587282395174421740539371584, −2.02895605873748635540766396231,
2.99953893435201362555814620289, 4.34688403368470327698843044606, 5.60946620480892776908866980382, 6.45581861224275953103461660851, 7.78871758008494411283579834540, 8.440327092698017982364765255790, 9.666611710270148306101285950825, 10.89885766179764084292457815165, 12.05278273691497617937970632253, 12.89328439347955743801991004717