# Properties

 Label 2-6e3-24.5-c2-0-27 Degree $2$ Conductor $216$ Sign $1$ Analytic cond. $5.88557$ Root an. cond. $2.42602$ Motivic weight $2$ Arithmetic yes Rational no Primitive yes Self-dual yes Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + 2·2-s + 4·4-s + 9.48·5-s − 3.48·7-s + 8·8-s + 18.9·10-s − 21.9·11-s − 6.97·14-s + 16·16-s + 37.9·20-s − 43.9·22-s + 64.9·25-s − 13.9·28-s − 50·29-s + 23.4·31-s + 32·32-s − 33.0·35-s + 75.8·40-s − 87.8·44-s − 36.8·49-s + 129.·50-s − 89.4·53-s − 208.·55-s − 27.8·56-s − 100·58-s + 10·59-s + 46.8·62-s + ⋯
 L(s)  = 1 + 2-s + 4-s + 1.89·5-s − 0.497·7-s + 8-s + 1.89·10-s − 1.99·11-s − 0.497·14-s + 16-s + 1.89·20-s − 1.99·22-s + 2.59·25-s − 0.497·28-s − 1.72·29-s + 0.755·31-s + 32-s − 0.944·35-s + 1.89·40-s − 1.99·44-s − 0.752·49-s + 2.59·50-s − 1.68·53-s − 3.78·55-s − 0.497·56-s − 1.72·58-s + 0.169·59-s + 0.755·62-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$216$$    =    $$2^{3} \cdot 3^{3}$$ Sign: $1$ Analytic conductor: $$5.88557$$ Root analytic conductor: $$2.42602$$ Motivic weight: $$2$$ Rational: no Arithmetic: yes Character: $\chi_{216} (53, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(2,\ 216,\ (\ :1),\ 1)$$

## Particular Values

 $$L(\frac{3}{2})$$ $$\approx$$ $$3.323276912$$ $$L(\frac12)$$ $$\approx$$ $$3.323276912$$ $$L(2)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 - 2T$$
3 $$1$$
good5 $$1 - 9.48T + 25T^{2}$$
7 $$1 + 3.48T + 49T^{2}$$
11 $$1 + 21.9T + 121T^{2}$$
13 $$1 - 169T^{2}$$
17 $$1 - 289T^{2}$$
19 $$1 - 361T^{2}$$
23 $$1 - 529T^{2}$$
29 $$1 + 50T + 841T^{2}$$
31 $$1 - 23.4T + 961T^{2}$$
37 $$1 - 1.36e3T^{2}$$
41 $$1 - 1.68e3T^{2}$$
43 $$1 - 1.84e3T^{2}$$
47 $$1 - 2.20e3T^{2}$$
53 $$1 + 89.4T + 2.80e3T^{2}$$
59 $$1 - 10T + 3.48e3T^{2}$$
61 $$1 - 3.72e3T^{2}$$
67 $$1 - 4.48e3T^{2}$$
71 $$1 - 5.04e3T^{2}$$
73 $$1 - 93.7T + 5.32e3T^{2}$$
79 $$1 + 58T + 6.24e3T^{2}$$
83 $$1 - 151.T + 6.88e3T^{2}$$
89 $$1 - 7.92e3T^{2}$$
97 $$1 - 61.0T + 9.40e3T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−12.62151192715286089363614937032, −11.00066963430168686405502360083, −10.27713823805249923090290550963, −9.484174955687653977700448194286, −7.85879263318750141785987509295, −6.57275785743757410232237913225, −5.67799324969658571577223763054, −4.99919492001644686267661053982, −3.00884831610442378889702866765, −2.03561600933202312448902025052, 2.03561600933202312448902025052, 3.00884831610442378889702866765, 4.99919492001644686267661053982, 5.67799324969658571577223763054, 6.57275785743757410232237913225, 7.85879263318750141785987509295, 9.484174955687653977700448194286, 10.27713823805249923090290550963, 11.00066963430168686405502360083, 12.62151192715286089363614937032