Properties

Label 2-6e3-216.133-c1-0-21
Degree $2$
Conductor $216$
Sign $0.819 + 0.572i$
Analytic cond. $1.72476$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.34 − 0.441i)2-s + (1.73 − 0.0302i)3-s + (1.60 + 1.18i)4-s + (−0.721 − 0.860i)5-s + (−2.33 − 0.724i)6-s + (1.31 − 0.479i)7-s + (−1.63 − 2.30i)8-s + (2.99 − 0.104i)9-s + (0.589 + 1.47i)10-s + (1.05 − 1.26i)11-s + (2.82 + 2.00i)12-s + (−0.671 + 0.118i)13-s + (−1.98 + 0.0622i)14-s + (−1.27 − 1.46i)15-s + (1.18 + 3.82i)16-s + (0.907 + 1.57i)17-s + ⋯
L(s)  = 1  + (−0.949 − 0.312i)2-s + (0.999 − 0.0174i)3-s + (0.804 + 0.593i)4-s + (−0.322 − 0.384i)5-s + (−0.955 − 0.295i)6-s + (0.498 − 0.181i)7-s + (−0.579 − 0.815i)8-s + (0.999 − 0.0349i)9-s + (0.186 + 0.466i)10-s + (0.319 − 0.380i)11-s + (0.815 + 0.579i)12-s + (−0.186 + 0.0328i)13-s + (−0.529 + 0.0166i)14-s + (−0.329 − 0.378i)15-s + (0.295 + 0.955i)16-s + (0.220 + 0.381i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.819 + 0.572i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.819 + 0.572i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $0.819 + 0.572i$
Analytic conductor: \(1.72476\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (133, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1/2),\ 0.819 + 0.572i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.07535 - 0.338378i\)
\(L(\frac12)\) \(\approx\) \(1.07535 - 0.338378i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.34 + 0.441i)T \)
3 \( 1 + (-1.73 + 0.0302i)T \)
good5 \( 1 + (0.721 + 0.860i)T + (-0.868 + 4.92i)T^{2} \)
7 \( 1 + (-1.31 + 0.479i)T + (5.36 - 4.49i)T^{2} \)
11 \( 1 + (-1.05 + 1.26i)T + (-1.91 - 10.8i)T^{2} \)
13 \( 1 + (0.671 - 0.118i)T + (12.2 - 4.44i)T^{2} \)
17 \( 1 + (-0.907 - 1.57i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2.96 - 1.71i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (3.62 + 1.31i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (-3.92 - 0.691i)T + (27.2 + 9.91i)T^{2} \)
31 \( 1 + (6.21 + 2.26i)T + (23.7 + 19.9i)T^{2} \)
37 \( 1 + (-3.83 + 2.21i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-0.952 - 5.40i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (7.26 - 8.65i)T + (-7.46 - 42.3i)T^{2} \)
47 \( 1 + (11.5 - 4.20i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 - 6.89iT - 53T^{2} \)
59 \( 1 + (6.78 + 8.09i)T + (-10.2 + 58.1i)T^{2} \)
61 \( 1 + (-1.24 - 3.40i)T + (-46.7 + 39.2i)T^{2} \)
67 \( 1 + (11.9 - 2.10i)T + (62.9 - 22.9i)T^{2} \)
71 \( 1 + (-6.80 - 11.7i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-4.73 + 8.20i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-1.59 + 9.03i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (-1.29 - 0.228i)T + (77.9 + 28.3i)T^{2} \)
89 \( 1 + (3.52 - 6.10i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (6.33 + 5.31i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.14546025965272644375942260813, −11.15042972186481421662725281665, −10.03214412415030576046582163724, −9.250900386656741885534963005802, −8.141849245219348943394558237979, −7.82506181928782269570570902997, −6.41312214409831037807751440954, −4.36661709785313892117124720370, −3.10063802012875664982733264063, −1.49920558869759316109100521178, 1.84691220598850628783022992562, 3.32240870083796185829812174095, 5.10589054442774434488223181646, 6.81211494041398387867793564749, 7.55087413373891202213550619237, 8.425151418303016439196741954116, 9.379797282576025705907445944220, 10.14864434981969769536651644357, 11.30291930979233041125860578884, 12.17891110336714584896969872580

Graph of the $Z$-function along the critical line