Properties

Label 2-6e3-216.13-c1-0-1
Degree $2$
Conductor $216$
Sign $-0.833 + 0.551i$
Analytic cond. $1.72476$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.938 + 1.05i)2-s + (−0.0518 + 1.73i)3-s + (−0.239 − 1.98i)4-s + (−1.55 + 1.84i)5-s + (−1.78 − 1.67i)6-s + (−1.49 − 0.544i)7-s + (2.32 + 1.60i)8-s + (−2.99 − 0.179i)9-s + (−0.500 − 3.37i)10-s + (0.102 + 0.122i)11-s + (3.45 − 0.311i)12-s + (−3.39 − 0.597i)13-s + (1.98 − 1.07i)14-s + (−3.12 − 2.78i)15-s + (−3.88 + 0.950i)16-s + (−1.43 + 2.48i)17-s + ⋯
L(s)  = 1  + (−0.663 + 0.748i)2-s + (−0.0299 + 0.999i)3-s + (−0.119 − 0.992i)4-s + (−0.693 + 0.826i)5-s + (−0.728 − 0.685i)6-s + (−0.565 − 0.205i)7-s + (0.822 + 0.569i)8-s + (−0.998 − 0.0597i)9-s + (−0.158 − 1.06i)10-s + (0.0308 + 0.0367i)11-s + (0.995 − 0.0898i)12-s + (−0.940 − 0.165i)13-s + (0.529 − 0.286i)14-s + (−0.805 − 0.718i)15-s + (−0.971 + 0.237i)16-s + (−0.348 + 0.603i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.833 + 0.551i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.833 + 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $-0.833 + 0.551i$
Analytic conductor: \(1.72476\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1/2),\ -0.833 + 0.551i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.112108 - 0.372510i\)
\(L(\frac12)\) \(\approx\) \(0.112108 - 0.372510i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.938 - 1.05i)T \)
3 \( 1 + (0.0518 - 1.73i)T \)
good5 \( 1 + (1.55 - 1.84i)T + (-0.868 - 4.92i)T^{2} \)
7 \( 1 + (1.49 + 0.544i)T + (5.36 + 4.49i)T^{2} \)
11 \( 1 + (-0.102 - 0.122i)T + (-1.91 + 10.8i)T^{2} \)
13 \( 1 + (3.39 + 0.597i)T + (12.2 + 4.44i)T^{2} \)
17 \( 1 + (1.43 - 2.48i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-3.75 + 2.16i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2.14 + 0.781i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (8.60 - 1.51i)T + (27.2 - 9.91i)T^{2} \)
31 \( 1 + (6.69 - 2.43i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-5.14 - 2.97i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (1.74 - 9.90i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (-7.59 - 9.05i)T + (-7.46 + 42.3i)T^{2} \)
47 \( 1 + (-3.66 - 1.33i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 - 9.80iT - 53T^{2} \)
59 \( 1 + (1.72 - 2.05i)T + (-10.2 - 58.1i)T^{2} \)
61 \( 1 + (-0.492 + 1.35i)T + (-46.7 - 39.2i)T^{2} \)
67 \( 1 + (0.225 + 0.0397i)T + (62.9 + 22.9i)T^{2} \)
71 \( 1 + (-2.82 + 4.88i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-7.14 - 12.3i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (2.18 + 12.3i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (11.1 - 1.95i)T + (77.9 - 28.3i)T^{2} \)
89 \( 1 + (3.73 + 6.46i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-5.17 + 4.34i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99406783444204343934447017131, −11.36165852414000258821274238645, −10.85102478348525792205044540635, −9.788496146836310465329484966603, −9.170720661710757342041952460003, −7.80954285448698742886416142668, −7.00031668978155989878203886771, −5.76908831453123610202749786410, −4.50445058463553883262690427762, −3.08361276192077184171137013195, 0.39258460730639900100475068046, 2.22834829117737302936665440582, 3.74297121169264400393574392135, 5.38955987979508479022044334035, 7.15337570075540553438482676274, 7.71303867893534249085415312438, 8.906888658488463145670669868159, 9.523941722662528485031776081183, 11.06561510973467051739253343814, 11.88302784750431898536810645863

Graph of the $Z$-function along the critical line