Properties

Label 2-6e3-216.13-c1-0-0
Degree $2$
Conductor $216$
Sign $-0.424 - 0.905i$
Analytic cond. $1.72476$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.28 + 0.593i)2-s + (−1.30 − 1.13i)3-s + (1.29 − 1.52i)4-s + (−0.508 + 0.606i)5-s + (2.35 + 0.678i)6-s + (−3.72 − 1.35i)7-s + (−0.756 + 2.72i)8-s + (0.427 + 2.96i)9-s + (0.292 − 1.08i)10-s + (2.92 + 3.49i)11-s + (−3.42 + 0.527i)12-s + (3.31 + 0.584i)13-s + (5.57 − 0.471i)14-s + (1.35 − 0.216i)15-s + (−0.646 − 3.94i)16-s + (−2.50 + 4.34i)17-s + ⋯
L(s)  = 1  + (−0.907 + 0.419i)2-s + (−0.755 − 0.654i)3-s + (0.647 − 0.762i)4-s + (−0.227 + 0.271i)5-s + (0.960 + 0.276i)6-s + (−1.40 − 0.511i)7-s + (−0.267 + 0.963i)8-s + (0.142 + 0.989i)9-s + (0.0926 − 0.341i)10-s + (0.883 + 1.05i)11-s + (−0.988 + 0.152i)12-s + (0.920 + 0.162i)13-s + (1.49 − 0.125i)14-s + (0.349 − 0.0559i)15-s + (−0.161 − 0.986i)16-s + (−0.608 + 1.05i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.424 - 0.905i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.424 - 0.905i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $-0.424 - 0.905i$
Analytic conductor: \(1.72476\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1/2),\ -0.424 - 0.905i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.164922 + 0.259409i\)
\(L(\frac12)\) \(\approx\) \(0.164922 + 0.259409i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.28 - 0.593i)T \)
3 \( 1 + (1.30 + 1.13i)T \)
good5 \( 1 + (0.508 - 0.606i)T + (-0.868 - 4.92i)T^{2} \)
7 \( 1 + (3.72 + 1.35i)T + (5.36 + 4.49i)T^{2} \)
11 \( 1 + (-2.92 - 3.49i)T + (-1.91 + 10.8i)T^{2} \)
13 \( 1 + (-3.31 - 0.584i)T + (12.2 + 4.44i)T^{2} \)
17 \( 1 + (2.50 - 4.34i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (6.10 - 3.52i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (4.33 - 1.57i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (3.32 - 0.585i)T + (27.2 - 9.91i)T^{2} \)
31 \( 1 + (-7.51 + 2.73i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (3.56 + 2.05i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (-0.333 + 1.88i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (-3.66 - 4.36i)T + (-7.46 + 42.3i)T^{2} \)
47 \( 1 + (7.37 + 2.68i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 + 1.95iT - 53T^{2} \)
59 \( 1 + (-3.02 + 3.60i)T + (-10.2 - 58.1i)T^{2} \)
61 \( 1 + (1.87 - 5.15i)T + (-46.7 - 39.2i)T^{2} \)
67 \( 1 + (5.36 + 0.945i)T + (62.9 + 22.9i)T^{2} \)
71 \( 1 + (5.56 - 9.63i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (1.32 + 2.28i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (0.150 + 0.852i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (0.0489 - 0.00863i)T + (77.9 - 28.3i)T^{2} \)
89 \( 1 + (2.15 + 3.73i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-5.00 + 4.19i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.55102390278593257903912840214, −11.50599627235616213066420832189, −10.53877722247724207142942718906, −9.849109582339243113677765032773, −8.590721931521765710344000953330, −7.40516659518976635720565789649, −6.47987132600267058960738376182, −6.12735947402863043373045248667, −4.03023103069522548255905444387, −1.75069172747370558699203272290, 0.37273006083646312686736223407, 3.03617940352311346503297527796, 4.19985375454598529919905694516, 6.21856842863930132100186484650, 6.56898531266480909226015809134, 8.592121310240677513734549668346, 9.069616906093272803120068886981, 10.07109300456640339209720938432, 10.99359514922843775751854986876, 11.78730776054034589682252774480

Graph of the $Z$-function along the critical line