Properties

Label 2-6e3-216.11-c1-0-25
Degree $2$
Conductor $216$
Sign $0.718 + 0.695i$
Analytic cond. $1.72476$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.860 − 1.12i)2-s + (1.59 + 0.669i)3-s + (−0.517 − 1.93i)4-s + (3.00 + 1.09i)5-s + (2.12 − 1.21i)6-s + (−4.58 − 0.808i)7-s + (−2.61 − 1.08i)8-s + (2.10 + 2.13i)9-s + (3.81 − 2.43i)10-s + (−0.303 − 0.833i)11-s + (0.466 − 3.43i)12-s + (1.22 + 1.45i)13-s + (−4.85 + 4.44i)14-s + (4.07 + 3.76i)15-s + (−3.46 + 2.00i)16-s + (−4.03 + 2.32i)17-s + ⋯
L(s)  = 1  + (0.608 − 0.793i)2-s + (0.922 + 0.386i)3-s + (−0.258 − 0.965i)4-s + (1.34 + 0.489i)5-s + (0.868 − 0.496i)6-s + (−1.73 − 0.305i)7-s + (−0.923 − 0.382i)8-s + (0.700 + 0.713i)9-s + (1.20 − 0.769i)10-s + (−0.0914 − 0.251i)11-s + (0.134 − 0.990i)12-s + (0.338 + 0.403i)13-s + (−1.29 + 1.18i)14-s + (1.05 + 0.972i)15-s + (−0.865 + 0.500i)16-s + (−0.978 + 0.564i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.718 + 0.695i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.718 + 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $0.718 + 0.695i$
Analytic conductor: \(1.72476\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1/2),\ 0.718 + 0.695i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.94266 - 0.786130i\)
\(L(\frac12)\) \(\approx\) \(1.94266 - 0.786130i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.860 + 1.12i)T \)
3 \( 1 + (-1.59 - 0.669i)T \)
good5 \( 1 + (-3.00 - 1.09i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (4.58 + 0.808i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (0.303 + 0.833i)T + (-8.42 + 7.07i)T^{2} \)
13 \( 1 + (-1.22 - 1.45i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (4.03 - 2.32i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.171 - 0.296i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.00 + 5.68i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (4.16 + 3.49i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-7.80 + 1.37i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (2.31 - 1.33i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-0.0346 - 0.0413i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (2.85 - 1.04i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (1.90 - 10.7i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 1.27T + 53T^{2} \)
59 \( 1 + (-2.43 + 6.68i)T + (-45.1 - 37.9i)T^{2} \)
61 \( 1 + (-8.19 - 1.44i)T + (57.3 + 20.8i)T^{2} \)
67 \( 1 + (6.31 - 5.29i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (0.186 + 0.323i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-6.29 + 10.9i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (2.54 - 3.03i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-8.90 + 10.6i)T + (-14.4 - 81.7i)T^{2} \)
89 \( 1 + (6.35 + 3.66i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (0.833 - 0.303i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.61407967502491980082857015599, −10.93812798211978437659250721562, −10.08597101414650221518497895079, −9.679504552079187960618317067397, −8.738815764557886445576591034861, −6.63777244260437645545732789797, −6.07664283168937633897278987357, −4.32381794982433439712269841196, −3.14985384986433858577511939588, −2.21138235873014524389658998104, 2.45703510623619484586395576517, 3.61008822627537983102100157132, 5.34616452591745069160582979217, 6.36549241535767567746972746617, 7.07767258233656024621715621033, 8.581829188054038853489100922099, 9.306271891809551095358210460960, 9.957324805048032362580976156204, 12.07251889984841094923927413590, 13.07496110283674069404977693182

Graph of the $Z$-function along the critical line