Properties

Label 2-6e3-216.11-c1-0-19
Degree $2$
Conductor $216$
Sign $0.0114 + 0.999i$
Analytic cond. $1.72476$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.21 + 0.717i)2-s + (−1.66 − 0.472i)3-s + (0.970 − 1.74i)4-s + (1.70 + 0.621i)5-s + (2.36 − 0.620i)6-s + (−3.32 − 0.585i)7-s + (0.0715 + 2.82i)8-s + (2.55 + 1.57i)9-s + (−2.52 + 0.467i)10-s + (−0.942 − 2.58i)11-s + (−2.44 + 2.45i)12-s + (−3.98 − 4.74i)13-s + (4.46 − 1.66i)14-s + (−2.55 − 1.84i)15-s + (−2.11 − 3.39i)16-s + (2.90 − 1.67i)17-s + ⋯
L(s)  = 1  + (−0.861 + 0.507i)2-s + (−0.962 − 0.272i)3-s + (0.485 − 0.874i)4-s + (0.763 + 0.277i)5-s + (0.967 − 0.253i)6-s + (−1.25 − 0.221i)7-s + (0.0253 + 0.999i)8-s + (0.851 + 0.524i)9-s + (−0.798 + 0.147i)10-s + (−0.284 − 0.780i)11-s + (−0.705 + 0.708i)12-s + (−1.10 − 1.31i)13-s + (1.19 − 0.445i)14-s + (−0.658 − 0.475i)15-s + (−0.528 − 0.848i)16-s + (0.703 − 0.406i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0114 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0114 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $0.0114 + 0.999i$
Analytic conductor: \(1.72476\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1/2),\ 0.0114 + 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.288551 - 0.285255i\)
\(L(\frac12)\) \(\approx\) \(0.288551 - 0.285255i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.21 - 0.717i)T \)
3 \( 1 + (1.66 + 0.472i)T \)
good5 \( 1 + (-1.70 - 0.621i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (3.32 + 0.585i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (0.942 + 2.58i)T + (-8.42 + 7.07i)T^{2} \)
13 \( 1 + (3.98 + 4.74i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (-2.90 + 1.67i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.87 + 4.98i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.396 - 2.25i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (7.06 + 5.92i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-1.38 + 0.244i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (4.33 - 2.50i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-1.54 - 1.84i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-3.42 + 1.24i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (0.530 - 3.00i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 0.184T + 53T^{2} \)
59 \( 1 + (4.44 - 12.2i)T + (-45.1 - 37.9i)T^{2} \)
61 \( 1 + (-13.9 - 2.45i)T + (57.3 + 20.8i)T^{2} \)
67 \( 1 + (-4.70 + 3.94i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (1.83 + 3.18i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-0.136 + 0.236i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (0.710 - 0.846i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-2.40 + 2.86i)T + (-14.4 - 81.7i)T^{2} \)
89 \( 1 + (-5.59 - 3.22i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (14.5 - 5.29i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.90570385481015440874201800582, −10.82874720268544856823427719078, −9.956524762538017837187154374411, −9.540979732195324758255641060280, −7.77844482602608768321707585045, −6.99512474715698271863009657519, −5.92166993284331358793663637930, −5.35132809253151960136506640321, −2.75253749850637778183759844743, −0.48575733496012861084638845280, 1.88695271381678183793228062360, 3.73788018928897440941604826976, 5.35603589406622978919261578617, 6.55215331337094958499777546418, 7.40261248421099786598128785727, 9.229036791125150803562276683620, 9.741291146535252984964689629523, 10.28073625843738657784296729032, 11.59699731765983689400594931859, 12.53094976959895216851190806949

Graph of the $Z$-function along the critical line