Properties

Label 2-6e3-216.101-c2-0-4
Degree $2$
Conductor $216$
Sign $-0.366 + 0.930i$
Analytic cond. $5.88557$
Root an. cond. $2.42602$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.463 + 1.94i)2-s + (0.0358 + 2.99i)3-s + (−3.56 − 1.80i)4-s + (1.24 + 7.06i)5-s + (−5.85 − 1.32i)6-s + (−7.11 − 5.96i)7-s + (5.16 − 6.10i)8-s + (−8.99 + 0.214i)9-s + (−14.3 − 0.851i)10-s + (0.0360 − 0.204i)11-s + (5.28 − 10.7i)12-s + (−3.20 + 8.80i)13-s + (14.9 − 11.0i)14-s + (−21.1 + 3.98i)15-s + (9.48 + 12.8i)16-s + (6.74 − 3.89i)17-s + ⋯
L(s)  = 1  + (−0.231 + 0.972i)2-s + (0.0119 + 0.999i)3-s + (−0.892 − 0.451i)4-s + (0.249 + 1.41i)5-s + (−0.975 − 0.220i)6-s + (−1.01 − 0.852i)7-s + (0.645 − 0.763i)8-s + (−0.999 + 0.0238i)9-s + (−1.43 − 0.0851i)10-s + (0.00327 − 0.0185i)11-s + (0.440 − 0.897i)12-s + (−0.246 + 0.676i)13-s + (1.06 − 0.790i)14-s + (−1.40 + 0.265i)15-s + (0.593 + 0.805i)16-s + (0.397 − 0.229i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.366 + 0.930i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.366 + 0.930i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $-0.366 + 0.930i$
Analytic conductor: \(5.88557\)
Root analytic conductor: \(2.42602\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1),\ -0.366 + 0.930i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.340495 - 0.500067i\)
\(L(\frac12)\) \(\approx\) \(0.340495 - 0.500067i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.463 - 1.94i)T \)
3 \( 1 + (-0.0358 - 2.99i)T \)
good5 \( 1 + (-1.24 - 7.06i)T + (-23.4 + 8.55i)T^{2} \)
7 \( 1 + (7.11 + 5.96i)T + (8.50 + 48.2i)T^{2} \)
11 \( 1 + (-0.0360 + 0.204i)T + (-113. - 41.3i)T^{2} \)
13 \( 1 + (3.20 - 8.80i)T + (-129. - 108. i)T^{2} \)
17 \( 1 + (-6.74 + 3.89i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (4.10 + 2.36i)T + (180.5 + 312. i)T^{2} \)
23 \( 1 + (-7.22 - 8.61i)T + (-91.8 + 520. i)T^{2} \)
29 \( 1 + (47.3 - 17.2i)T + (644. - 540. i)T^{2} \)
31 \( 1 + (-31.8 + 26.7i)T + (166. - 946. i)T^{2} \)
37 \( 1 + (38.3 - 22.1i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-3.37 + 9.28i)T + (-1.28e3 - 1.08e3i)T^{2} \)
43 \( 1 + (-15.6 - 2.76i)T + (1.73e3 + 632. i)T^{2} \)
47 \( 1 + (44.0 - 52.5i)T + (-383. - 2.17e3i)T^{2} \)
53 \( 1 - 59.4T + 2.80e3T^{2} \)
59 \( 1 + (9.30 + 52.7i)T + (-3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (77.7 - 92.6i)T + (-646. - 3.66e3i)T^{2} \)
67 \( 1 + (28.1 - 77.2i)T + (-3.43e3 - 2.88e3i)T^{2} \)
71 \( 1 + (54.9 - 31.7i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (69.0 - 119. i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (83.2 - 30.2i)T + (4.78e3 - 4.01e3i)T^{2} \)
83 \( 1 + (-77.3 + 28.1i)T + (5.27e3 - 4.42e3i)T^{2} \)
89 \( 1 + (-152. - 88.3i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (-20.5 + 116. i)T + (-8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20385195129241886264250100214, −11.41362315127352656501867900811, −10.37687677215798751643929346542, −9.906031195413524999259411767398, −9.027540798287646537464260990062, −7.46518763353871791660982358218, −6.71291346773591690293346333976, −5.74624460252936712834303066768, −4.22615793365395506757474215963, −3.16779824548737679513855800191, 0.35492894591172214691544109114, 1.85882814214913222850226503323, 3.22909196428918893437132402457, 5.05885870763659662932046853126, 6.01368708177381955001992123169, 7.71316606141440662469082425770, 8.737958834056314144750310393824, 9.241809361543088930884793474341, 10.42374865326749213753299478361, 11.92536230743829435729863858477

Graph of the $Z$-function along the critical line