Properties

Label 2-6e3-216.101-c2-0-33
Degree $2$
Conductor $216$
Sign $-0.149 + 0.988i$
Analytic cond. $5.88557$
Root an. cond. $2.42602$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.136 − 1.99i)2-s + (−2.85 + 0.910i)3-s + (−3.96 + 0.545i)4-s + (1.49 + 8.48i)5-s + (2.20 + 5.57i)6-s + (−7.40 − 6.21i)7-s + (1.62 + 7.83i)8-s + (7.34 − 5.20i)9-s + (16.7 − 4.14i)10-s + (2.58 − 14.6i)11-s + (10.8 − 5.16i)12-s + (3.35 − 9.21i)13-s + (−11.3 + 15.6i)14-s + (−12.0 − 22.8i)15-s + (15.4 − 4.32i)16-s + (14.8 − 8.59i)17-s + ⋯
L(s)  = 1  + (−0.0683 − 0.997i)2-s + (−0.952 + 0.303i)3-s + (−0.990 + 0.136i)4-s + (0.299 + 1.69i)5-s + (0.367 + 0.929i)6-s + (−1.05 − 0.887i)7-s + (0.203 + 0.979i)8-s + (0.815 − 0.578i)9-s + (1.67 − 0.414i)10-s + (0.234 − 1.33i)11-s + (0.902 − 0.430i)12-s + (0.257 − 0.708i)13-s + (−0.813 + 1.11i)14-s + (−0.800 − 1.52i)15-s + (0.962 − 0.270i)16-s + (0.876 − 0.505i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.149 + 0.988i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.149 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $-0.149 + 0.988i$
Analytic conductor: \(5.88557\)
Root analytic conductor: \(2.42602\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1),\ -0.149 + 0.988i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.519682 - 0.603876i\)
\(L(\frac12)\) \(\approx\) \(0.519682 - 0.603876i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.136 + 1.99i)T \)
3 \( 1 + (2.85 - 0.910i)T \)
good5 \( 1 + (-1.49 - 8.48i)T + (-23.4 + 8.55i)T^{2} \)
7 \( 1 + (7.40 + 6.21i)T + (8.50 + 48.2i)T^{2} \)
11 \( 1 + (-2.58 + 14.6i)T + (-113. - 41.3i)T^{2} \)
13 \( 1 + (-3.35 + 9.21i)T + (-129. - 108. i)T^{2} \)
17 \( 1 + (-14.8 + 8.59i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (-16.8 - 9.73i)T + (180.5 + 312. i)T^{2} \)
23 \( 1 + (7.74 + 9.22i)T + (-91.8 + 520. i)T^{2} \)
29 \( 1 + (-14.6 + 5.32i)T + (644. - 540. i)T^{2} \)
31 \( 1 + (-14.0 + 11.8i)T + (166. - 946. i)T^{2} \)
37 \( 1 + (23.4 - 13.5i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-23.5 + 64.8i)T + (-1.28e3 - 1.08e3i)T^{2} \)
43 \( 1 + (-20.3 - 3.59i)T + (1.73e3 + 632. i)T^{2} \)
47 \( 1 + (-3.08 + 3.67i)T + (-383. - 2.17e3i)T^{2} \)
53 \( 1 + 38.0T + 2.80e3T^{2} \)
59 \( 1 + (4.87 + 27.6i)T + (-3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (14.4 - 17.2i)T + (-646. - 3.66e3i)T^{2} \)
67 \( 1 + (-24.9 + 68.4i)T + (-3.43e3 - 2.88e3i)T^{2} \)
71 \( 1 + (-97.3 + 56.2i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-59.1 + 102. i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (90.3 - 32.8i)T + (4.78e3 - 4.01e3i)T^{2} \)
83 \( 1 + (79.3 - 28.8i)T + (5.27e3 - 4.42e3i)T^{2} \)
89 \( 1 + (36.3 + 20.9i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (1.76 - 10.0i)T + (-8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.54059349470066535162777584098, −10.70753801280192991210778657898, −10.27343006090682678012512552992, −9.542373915506327418041242172137, −7.68945203714078281259730292924, −6.47892044875072902714363284560, −5.62726266414892619085929567308, −3.68056881771589769427898676163, −3.12904947481381602261026467161, −0.60466315646757691718856632941, 1.27928298810298900029118891747, 4.35388215921753712970267609127, 5.27476862101538361318528669731, 6.04627669329488718759071767242, 7.09586434678897401048116756295, 8.363944009273746734976044846045, 9.510585894318057531686759558344, 9.792618964312907286331929110401, 11.89279465592931423309549194967, 12.58211295056325808278627522795

Graph of the $Z$-function along the critical line