Properties

Label 2-6e3-216.101-c2-0-14
Degree $2$
Conductor $216$
Sign $0.278 - 0.960i$
Analytic cond. $5.88557$
Root an. cond. $2.42602$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.45 − 1.37i)2-s + (2.65 + 1.39i)3-s + (0.232 + 3.99i)4-s + (1.27 + 7.23i)5-s + (−1.95 − 5.67i)6-s + (−3.68 − 3.08i)7-s + (5.14 − 6.12i)8-s + (5.13 + 7.39i)9-s + (8.07 − 12.2i)10-s + (1.42 − 8.09i)11-s + (−4.93 + 10.9i)12-s + (−7.79 + 21.4i)13-s + (1.11 + 9.54i)14-s + (−6.66 + 21.0i)15-s + (−15.8 + 1.86i)16-s + (−8.45 + 4.88i)17-s + ⋯
L(s)  = 1  + (−0.727 − 0.686i)2-s + (0.886 + 0.463i)3-s + (0.0582 + 0.998i)4-s + (0.255 + 1.44i)5-s + (−0.326 − 0.945i)6-s + (−0.525 − 0.441i)7-s + (0.642 − 0.766i)8-s + (0.570 + 0.821i)9-s + (0.807 − 1.22i)10-s + (0.129 − 0.736i)11-s + (−0.411 + 0.911i)12-s + (−0.599 + 1.64i)13-s + (0.0797 + 0.681i)14-s + (−0.444 + 1.40i)15-s + (−0.993 + 0.116i)16-s + (−0.497 + 0.287i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.278 - 0.960i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.278 - 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $0.278 - 0.960i$
Analytic conductor: \(5.88557\)
Root analytic conductor: \(2.42602\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1),\ 0.278 - 0.960i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.02203 + 0.768032i\)
\(L(\frac12)\) \(\approx\) \(1.02203 + 0.768032i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.45 + 1.37i)T \)
3 \( 1 + (-2.65 - 1.39i)T \)
good5 \( 1 + (-1.27 - 7.23i)T + (-23.4 + 8.55i)T^{2} \)
7 \( 1 + (3.68 + 3.08i)T + (8.50 + 48.2i)T^{2} \)
11 \( 1 + (-1.42 + 8.09i)T + (-113. - 41.3i)T^{2} \)
13 \( 1 + (7.79 - 21.4i)T + (-129. - 108. i)T^{2} \)
17 \( 1 + (8.45 - 4.88i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (7.48 + 4.32i)T + (180.5 + 312. i)T^{2} \)
23 \( 1 + (-12.0 - 14.3i)T + (-91.8 + 520. i)T^{2} \)
29 \( 1 + (-43.9 + 15.9i)T + (644. - 540. i)T^{2} \)
31 \( 1 + (20.7 - 17.4i)T + (166. - 946. i)T^{2} \)
37 \( 1 + (32.8 - 18.9i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-6.01 + 16.5i)T + (-1.28e3 - 1.08e3i)T^{2} \)
43 \( 1 + (-64.9 - 11.4i)T + (1.73e3 + 632. i)T^{2} \)
47 \( 1 + (-28.7 + 34.2i)T + (-383. - 2.17e3i)T^{2} \)
53 \( 1 - 65.5T + 2.80e3T^{2} \)
59 \( 1 + (-3.85 - 21.8i)T + (-3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (28.1 - 33.5i)T + (-646. - 3.66e3i)T^{2} \)
67 \( 1 + (-24.9 + 68.5i)T + (-3.43e3 - 2.88e3i)T^{2} \)
71 \( 1 + (96.8 - 55.9i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-33.8 + 58.5i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-66.4 + 24.1i)T + (4.78e3 - 4.01e3i)T^{2} \)
83 \( 1 + (-102. + 37.1i)T + (5.27e3 - 4.42e3i)T^{2} \)
89 \( 1 + (46.3 + 26.7i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (21.8 - 124. i)T + (-8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.01046114505095665028039126780, −10.89903261264862636437882275691, −10.39018074442187722646247061740, −9.434475126656254927900057309985, −8.677373626487949184961630827834, −7.26179387733040699176367924967, −6.68266161903366781735209825605, −4.20197835700765999061936409567, −3.19465690481620194621052814355, −2.17933715853804750047842349254, 0.818667798248192593903953680664, 2.43452559352018920281157140766, 4.64504442803460151999207408045, 5.77483869597011612002766457659, 7.06656790119048473415861951724, 8.076597457356319748379296501995, 8.871542331479270605085209586895, 9.476743609199323552340293253767, 10.44994384913787038411631007085, 12.50900416325677176973394150265

Graph of the $Z$-function along the critical line