Properties

Label 2-6e3-216.101-c2-0-13
Degree $2$
Conductor $216$
Sign $-0.676 - 0.736i$
Analytic cond. $5.88557$
Root an. cond. $2.42602$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.755 + 1.85i)2-s + (0.704 − 2.91i)3-s + (−2.85 + 2.79i)4-s + (1.59 + 9.02i)5-s + (5.93 − 0.900i)6-s + (−0.928 − 0.778i)7-s + (−7.34 − 3.17i)8-s + (−8.00 − 4.10i)9-s + (−15.5 + 9.77i)10-s + (−3.17 + 17.9i)11-s + (6.15 + 10.3i)12-s + (4.20 − 11.5i)13-s + (0.740 − 2.30i)14-s + (27.4 + 1.71i)15-s + (0.330 − 15.9i)16-s + (−16.5 + 9.56i)17-s + ⋯
L(s)  = 1  + (0.377 + 0.925i)2-s + (0.234 − 0.972i)3-s + (−0.714 + 0.699i)4-s + (0.318 + 1.80i)5-s + (0.988 − 0.150i)6-s + (−0.132 − 0.111i)7-s + (−0.917 − 0.396i)8-s + (−0.889 − 0.456i)9-s + (−1.55 + 0.977i)10-s + (−0.288 + 1.63i)11-s + (0.512 + 0.858i)12-s + (0.323 − 0.889i)13-s + (0.0529 − 0.164i)14-s + (1.82 + 0.114i)15-s + (0.0206 − 0.999i)16-s + (−0.974 + 0.562i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.676 - 0.736i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.676 - 0.736i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $-0.676 - 0.736i$
Analytic conductor: \(5.88557\)
Root analytic conductor: \(2.42602\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1),\ -0.676 - 0.736i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.650934 + 1.48155i\)
\(L(\frac12)\) \(\approx\) \(0.650934 + 1.48155i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.755 - 1.85i)T \)
3 \( 1 + (-0.704 + 2.91i)T \)
good5 \( 1 + (-1.59 - 9.02i)T + (-23.4 + 8.55i)T^{2} \)
7 \( 1 + (0.928 + 0.778i)T + (8.50 + 48.2i)T^{2} \)
11 \( 1 + (3.17 - 17.9i)T + (-113. - 41.3i)T^{2} \)
13 \( 1 + (-4.20 + 11.5i)T + (-129. - 108. i)T^{2} \)
17 \( 1 + (16.5 - 9.56i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (-21.0 - 12.1i)T + (180.5 + 312. i)T^{2} \)
23 \( 1 + (-15.5 - 18.5i)T + (-91.8 + 520. i)T^{2} \)
29 \( 1 + (-3.71 + 1.35i)T + (644. - 540. i)T^{2} \)
31 \( 1 + (-17.2 + 14.4i)T + (166. - 946. i)T^{2} \)
37 \( 1 + (5.34 - 3.08i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-10.7 + 29.6i)T + (-1.28e3 - 1.08e3i)T^{2} \)
43 \( 1 + (-55.2 - 9.74i)T + (1.73e3 + 632. i)T^{2} \)
47 \( 1 + (-10.6 + 12.7i)T + (-383. - 2.17e3i)T^{2} \)
53 \( 1 - 55.4T + 2.80e3T^{2} \)
59 \( 1 + (5.56 + 31.5i)T + (-3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (13.9 - 16.6i)T + (-646. - 3.66e3i)T^{2} \)
67 \( 1 + (-11.1 + 30.6i)T + (-3.43e3 - 2.88e3i)T^{2} \)
71 \( 1 + (-62.2 + 35.9i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (19.3 - 33.4i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-65.6 + 23.9i)T + (4.78e3 - 4.01e3i)T^{2} \)
83 \( 1 + (25.2 - 9.17i)T + (5.27e3 - 4.42e3i)T^{2} \)
89 \( 1 + (104. + 60.3i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (31.1 - 176. i)T + (-8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77751964960679946113259960755, −11.71065812854540866164161070228, −10.45230210075039401987280385626, −9.419482090149918534308346312178, −7.86706800995853105382144248666, −7.26119369674237861656338095587, −6.56574861912995552759639705075, −5.56195363054861114520056940822, −3.61019894450089673816351161309, −2.43558627779728927911265677476, 0.793180145258287749150965723240, 2.78316953719374584882471183011, 4.24301145419967576585844921437, 5.01382926939687019606993281534, 5.91458736396314103501574861554, 8.556998112564049786691998420051, 8.922650462454195441337294231291, 9.624410282758861186072216717442, 10.96016801317744463530070452774, 11.58611350626223425492699053757

Graph of the $Z$-function along the critical line