Properties

Label 2-6e2-1.1-c21-0-7
Degree $2$
Conductor $36$
Sign $-1$
Analytic cond. $100.611$
Root an. cond. $10.0305$
Motivic weight $21$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.12e7·5-s + 2.81e8·7-s + 3.61e10·11-s − 4.49e11·13-s − 2.12e12·17-s − 4.60e12·19-s − 9.50e13·23-s − 3.49e14·25-s + 2.24e15·29-s − 3.15e15·31-s + 3.17e15·35-s − 1.81e16·37-s + 1.69e17·41-s − 1.58e17·43-s + 1.34e17·47-s − 4.79e17·49-s + 1.56e16·53-s + 4.07e17·55-s − 2.97e18·59-s + 3.60e18·61-s − 5.06e18·65-s + 2.10e19·67-s − 2.19e19·71-s − 1.70e19·73-s + 1.01e19·77-s − 1.15e20·79-s + 9.66e19·83-s + ⋯
L(s)  = 1  + 0.516·5-s + 0.377·7-s + 0.420·11-s − 0.903·13-s − 0.255·17-s − 0.172·19-s − 0.478·23-s − 0.733·25-s + 0.991·29-s − 0.691·31-s + 0.194·35-s − 0.621·37-s + 1.97·41-s − 1.12·43-s + 0.373·47-s − 0.857·49-s + 0.0122·53-s + 0.216·55-s − 0.758·59-s + 0.646·61-s − 0.466·65-s + 1.41·67-s − 0.801·71-s − 0.464·73-s + 0.158·77-s − 1.36·79-s + 0.683·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36\)    =    \(2^{2} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(100.611\)
Root analytic conductor: \(10.0305\)
Motivic weight: \(21\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 36,\ (\ :21/2),\ -1)\)

Particular Values

\(L(11)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 2253618 p T + p^{21} T^{2} \)
7 \( 1 - 40273448 p T + p^{21} T^{2} \)
11 \( 1 - 36172082484 T + p^{21} T^{2} \)
13 \( 1 + 34546044490 p T + p^{21} T^{2} \)
17 \( 1 + 124815222738 p T + p^{21} T^{2} \)
19 \( 1 + 242600328100 p T + p^{21} T^{2} \)
23 \( 1 + 95095276921656 T + p^{21} T^{2} \)
29 \( 1 - 77439392529354 p T + p^{21} T^{2} \)
31 \( 1 + 3155693201792656 T + p^{21} T^{2} \)
37 \( 1 + 18178503074861482 T + p^{21} T^{2} \)
41 \( 1 - 169649739387485910 T + p^{21} T^{2} \)
43 \( 1 + 158968551608988244 T + p^{21} T^{2} \)
47 \( 1 - 134697468442682736 T + p^{21} T^{2} \)
53 \( 1 - 15637375269722538 T + p^{21} T^{2} \)
59 \( 1 + 2977241337691499484 T + p^{21} T^{2} \)
61 \( 1 - 3603855625679330702 T + p^{21} T^{2} \)
67 \( 1 - 21066199531967164004 T + p^{21} T^{2} \)
71 \( 1 + 21980089544074358760 T + p^{21} T^{2} \)
73 \( 1 + 17054415965500339222 T + p^{21} T^{2} \)
79 \( 1 + \)\(11\!\cdots\!52\)\( T + p^{21} T^{2} \)
83 \( 1 - 96628520442403345644 T + p^{21} T^{2} \)
89 \( 1 + 60427571095732966650 T + p^{21} T^{2} \)
97 \( 1 + \)\(40\!\cdots\!98\)\( T + p^{21} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53183177958976774579025115426, −10.23684728934094697476540658045, −9.210082324324547376402380979535, −7.88844311851683927771994312137, −6.60067166877627645642040037460, −5.35574721960332546264241862071, −4.13582179178237159348181735536, −2.55606581989517353341033685707, −1.48407631671678202281933849285, 0, 1.48407631671678202281933849285, 2.55606581989517353341033685707, 4.13582179178237159348181735536, 5.35574721960332546264241862071, 6.60067166877627645642040037460, 7.88844311851683927771994312137, 9.210082324324547376402380979535, 10.23684728934094697476540658045, 11.53183177958976774579025115426

Graph of the $Z$-function along the critical line