Properties

Label 2-69e2-1.1-c1-0-196
Degree $2$
Conductor $4761$
Sign $-1$
Analytic cond. $38.0167$
Root an. cond. $6.16577$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.23·2-s + 3.00·4-s + 1.23·5-s − 3.23·7-s + 2.23·8-s + 2.76·10-s + 4·11-s − 4.47·13-s − 7.23·14-s − 0.999·16-s − 2.76·17-s − 7.23·19-s + 3.70·20-s + 8.94·22-s − 3.47·25-s − 10.0·26-s − 9.70·28-s − 4.47·29-s − 6.47·31-s − 6.70·32-s − 6.18·34-s − 4.00·35-s − 4.47·37-s − 16.1·38-s + 2.76·40-s + 10.9·41-s + 5.70·43-s + ⋯
L(s)  = 1  + 1.58·2-s + 1.50·4-s + 0.552·5-s − 1.22·7-s + 0.790·8-s + 0.874·10-s + 1.20·11-s − 1.24·13-s − 1.93·14-s − 0.249·16-s − 0.670·17-s − 1.66·19-s + 0.829·20-s + 1.90·22-s − 0.694·25-s − 1.96·26-s − 1.83·28-s − 0.830·29-s − 1.16·31-s − 1.18·32-s − 1.05·34-s − 0.676·35-s − 0.735·37-s − 2.62·38-s + 0.437·40-s + 1.70·41-s + 0.870·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4761 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4761 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4761\)    =    \(3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(38.0167\)
Root analytic conductor: \(6.16577\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4761,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 \)
good2 \( 1 - 2.23T + 2T^{2} \)
5 \( 1 - 1.23T + 5T^{2} \)
7 \( 1 + 3.23T + 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + 4.47T + 13T^{2} \)
17 \( 1 + 2.76T + 17T^{2} \)
19 \( 1 + 7.23T + 19T^{2} \)
29 \( 1 + 4.47T + 29T^{2} \)
31 \( 1 + 6.47T + 31T^{2} \)
37 \( 1 + 4.47T + 37T^{2} \)
41 \( 1 - 10.9T + 41T^{2} \)
43 \( 1 - 5.70T + 43T^{2} \)
47 \( 1 - 4T + 47T^{2} \)
53 \( 1 + 5.23T + 53T^{2} \)
59 \( 1 - 4.94T + 59T^{2} \)
61 \( 1 + 4.47T + 61T^{2} \)
67 \( 1 + 0.763T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - 6.94T + 73T^{2} \)
79 \( 1 + 9.70T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 + 1.23T + 89T^{2} \)
97 \( 1 + 8.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47999663485229153950745150913, −6.86661376067862079835013714337, −6.20321255043038000091092093698, −5.87486803901909635103121246176, −4.88241401673267097157112147684, −4.07798704613464740384160847535, −3.63718877556621655915960971546, −2.51820408223425551393347195049, −2.00296136672965993878470295531, 0, 2.00296136672965993878470295531, 2.51820408223425551393347195049, 3.63718877556621655915960971546, 4.07798704613464740384160847535, 4.88241401673267097157112147684, 5.87486803901909635103121246176, 6.20321255043038000091092093698, 6.86661376067862079835013714337, 7.47999663485229153950745150913

Graph of the $Z$-function along the critical line