Properties

Label 2-6975-1.1-c1-0-18
Degree $2$
Conductor $6975$
Sign $1$
Analytic cond. $55.6956$
Root an. cond. $7.46295$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5·11-s + 4·16-s − 5·17-s − 19-s − 5·23-s − 5·29-s − 31-s + 10·37-s − 10·43-s + 10·44-s − 7·49-s − 5·53-s + 10·59-s + 12·61-s − 8·64-s − 5·67-s + 10·68-s + 2·76-s − 4·79-s + 15·83-s − 15·89-s + 10·92-s − 5·97-s + 10·101-s + 5·103-s − 10·107-s + ⋯
L(s)  = 1  − 4-s − 1.50·11-s + 16-s − 1.21·17-s − 0.229·19-s − 1.04·23-s − 0.928·29-s − 0.179·31-s + 1.64·37-s − 1.52·43-s + 1.50·44-s − 49-s − 0.686·53-s + 1.30·59-s + 1.53·61-s − 64-s − 0.610·67-s + 1.21·68-s + 0.229·76-s − 0.450·79-s + 1.64·83-s − 1.58·89-s + 1.04·92-s − 0.507·97-s + 0.995·101-s + 0.492·103-s − 0.966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6975\)    =    \(3^{2} \cdot 5^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(55.6956\)
Root analytic conductor: \(7.46295\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6975,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5846971447\)
\(L(\frac12)\) \(\approx\) \(0.5846971447\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
31 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 + 5 T + p T^{2} \) 1.29.f
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.170393545719501567753713652965, −7.41395744385447578882794647797, −6.48756794281593571580354007420, −5.70017460468149024733356968258, −5.07474535880573760881544752916, −4.42079435904286573611721519030, −3.70848528006472173717751843921, −2.72333841453887006520886822470, −1.86404792772923216627969938554, −0.37594103532642005402513162613, 0.37594103532642005402513162613, 1.86404792772923216627969938554, 2.72333841453887006520886822470, 3.70848528006472173717751843921, 4.42079435904286573611721519030, 5.07474535880573760881544752916, 5.70017460468149024733356968258, 6.48756794281593571580354007420, 7.41395744385447578882794647797, 8.170393545719501567753713652965

Graph of the $Z$-function along the critical line