Properties

Label 2-6975-1.1-c1-0-163
Degree $2$
Conductor $6975$
Sign $-1$
Analytic cond. $55.6956$
Root an. cond. $7.46295$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.640·2-s − 1.58·4-s − 1.64·7-s − 2.29·8-s + 2.17·11-s + 0.709·13-s − 1.05·14-s + 1.70·16-s − 3.14·17-s − 1.10·19-s + 1.39·22-s + 4.43·23-s + 0.454·26-s + 2.60·28-s − 3.71·29-s − 31-s + 5.69·32-s − 2.01·34-s + 2.16·37-s − 0.706·38-s + 3.53·41-s + 3.01·43-s − 3.45·44-s + 2.84·46-s + 5.33·47-s − 4.30·49-s − 1.12·52-s + ⋯
L(s)  = 1  + 0.452·2-s − 0.794·4-s − 0.620·7-s − 0.812·8-s + 0.654·11-s + 0.196·13-s − 0.280·14-s + 0.426·16-s − 0.763·17-s − 0.253·19-s + 0.296·22-s + 0.925·23-s + 0.0891·26-s + 0.492·28-s − 0.690·29-s − 0.179·31-s + 1.00·32-s − 0.345·34-s + 0.356·37-s − 0.114·38-s + 0.552·41-s + 0.460·43-s − 0.520·44-s + 0.419·46-s + 0.777·47-s − 0.615·49-s − 0.156·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6975\)    =    \(3^{2} \cdot 5^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(55.6956\)
Root analytic conductor: \(7.46295\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6975,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
31 \( 1 + T \)
good2 \( 1 - 0.640T + 2T^{2} \)
7 \( 1 + 1.64T + 7T^{2} \)
11 \( 1 - 2.17T + 11T^{2} \)
13 \( 1 - 0.709T + 13T^{2} \)
17 \( 1 + 3.14T + 17T^{2} \)
19 \( 1 + 1.10T + 19T^{2} \)
23 \( 1 - 4.43T + 23T^{2} \)
29 \( 1 + 3.71T + 29T^{2} \)
37 \( 1 - 2.16T + 37T^{2} \)
41 \( 1 - 3.53T + 41T^{2} \)
43 \( 1 - 3.01T + 43T^{2} \)
47 \( 1 - 5.33T + 47T^{2} \)
53 \( 1 - 9.33T + 53T^{2} \)
59 \( 1 + 9.45T + 59T^{2} \)
61 \( 1 - 5.70T + 61T^{2} \)
67 \( 1 + 6.19T + 67T^{2} \)
71 \( 1 - 4.77T + 71T^{2} \)
73 \( 1 + 12.4T + 73T^{2} \)
79 \( 1 + 11.7T + 79T^{2} \)
83 \( 1 - 5.23T + 83T^{2} \)
89 \( 1 - 1.03T + 89T^{2} \)
97 \( 1 + 0.848T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51101402919523186692370101689, −6.79599693098889510212228871513, −6.08338960129734847078017422648, −5.51962722326629034844064691799, −4.58228944559477879292818919737, −4.06138710742613811713694784236, −3.33246715583209988737472377668, −2.49396124459371380385008285798, −1.17208830024103118126311230064, 0, 1.17208830024103118126311230064, 2.49396124459371380385008285798, 3.33246715583209988737472377668, 4.06138710742613811713694784236, 4.58228944559477879292818919737, 5.51962722326629034844064691799, 6.08338960129734847078017422648, 6.79599693098889510212228871513, 7.51101402919523186692370101689

Graph of the $Z$-function along the critical line